[ Table of contents ]

8        Spatial reference frames

8.1  Introduction

A spatial coordinate system is a means of associating a unique coordinate with a point in object-space. It is defined by binding an abstract CS to a normal embedding (see 8.2). A spatial reference frame is a specification of a spatial coordinate system for a region of object-space (see 8.3). It is formed by the binding of an abstract coordinate system to the normal embedding specified by an ORM for that object. A full specification specifies the CS and the ORM and includes values for CS parameters, if any, and a specification of the region of object-space. Some or all CS parameters may be bound by ORM parameters. In particular, a CS based on an oblate ellipsoid (or sphere) must match the parameters of the oblate ellipsoid (or sphere) RD of the ORM.

A spatial reference frame template is an abstraction of a collection of spatial reference frames that share the same abstract coordinate system, coordinate system parameter binding rules, and similar ORMs that model the same spatial object type (see 8.5). Spatial reference frames may be organized into specified sets so as to form an atlas for a large region of space. This International Standard specifies a collection of spatial reference frame templates, realizations of those templates, and sets of those realizations.

8.2  Spatial coordinate systems

If a normal embedding of position-space into object-space is defined, any abstract CS for a region of that position-space can be used to specify a spatial CS that associates coordinates in coordinate-space to points in object-space. This association is a binding of a CS via a normal embedding. The association is defined as:

                    formula or figure

formula or figure
Figure 8.1 — A spatial embedding of a surface CS

EXAMPLE            Figure 8.1 illustrates a spatial surface CS bound with a normal embedding of 3D position-space to the 3D object-space. In this illustration, a surface coordinate (uv) in coordinate-space is associated to a position (xyz) in the abstract position-space. That position is then identified with a position in the space of an object via the normal embedding of position-space. In this example, the normal embedding is determined by the selection of an origin and three unit points.

8.3  Spatial reference frame

8.3.1        Specification

A spatial reference frame (SRF) is a specification of a spatial coordinate system that is constructed from an ORM and a compatible abstract CS, such that coordinates uniquely specify positions with respect to the spatial object of the ORM. A specification of an SRF includes:

a)       an ORM,

b)       a CS compatible with the ORM,

c)       a binding of all parameters of the spatial CS,

d)       (optionally) kth coordinate-component names,

e)       (optionally) additional restrictions on the domain of valid coordinates in that spatial CS, and

f)         (optionally) if the CS is of CS type 3D, a vertical coordinate-component identification (see 8.4).

An SRF implicitly specifies a spatial CS defined by the binding of the CS via the normal embedding associated with the ORM.

Spatial CS compatibility and the other elements of the specification of an SRF are defined in the following clauses.

8.3.2        SRF specification elements

8.3.2.1            ORM and CS compatibility

The compatible CS type of the CS element of an SRF depends on the dimension of the ORM. The dimension of an ORM is defined as the dimension of the RD components of the specification of the ORM. The compatible CS types by ORM dimension are specified in Table 8.1.

Table 8.1 — Compatible CS types

ORM dimension

Compatible CS types

1D

1D CS

2D

Curve CS
2D CS

3D

Curve CS
Surface CS
3D CS

 

The use of surface CSs or 3D CSs that are based on an oblate ellipsoid (or sphere) are restricted to ORMs that are based on an oblate ellipsoid (or respectively, sphere) RD.

The surface CSs that are based on an oblate ellipsoid (or sphere) are:

a)       surface geodetic,

b)       surface planetodetic, and

c)       all map projections.

The 3D CSs that are based on an oblate ellipsoid (or sphere) are:

a)       geodetic 3D, and

b)       all augmented map projections.

As a further restriction, some CSs are based on spheres only. CS OBLIQUE_MERCATOR_SPHERICAL has this restriction.

8.3.2.2            CS parameter binding

All CS parameter values must be specified. In the case of a combination of a CS and an ORM based on an oblate ellipsoid (or sphere), the major semi-axis and minor semi-axis (or equivalently, the inverse flattening) (or respectively, sphere radius) of the ORM and CS shall match.

8.3.2.3            Coordinate-component names

A CS specification (see 5.9) includes the coordinate-component symbols with common names (if any). A specification of an SRF may optionally assign SRF-specific names to the kth coordinate-components. The name assignment shall reflect the common use in the intended application domain.

EXAMPLE            For a spherical CS, the assignment of SRF-specific names to the kth coordinate-components of “right ascension” for λ, “declination” for θ , and “radius” for ρ.

8.3.2.4            Coordinate valid-region

A CS specification (see 5.9) includes the specification of the CS domain and CS range where the generating function (or mapping equations) and its inverse(s) are defined. An SRF specification may further restrict the CS domain. A valid-region is a restriction of the CS domain of the generating function (or mapping equations) for a CS as used in an SRF. An extended valid-region is a second valid-region that contains the first valid-region as a subset. The specification of these restrictions is important for several (SRF specific) reasons:

a)       If the ORM is local, the restrictions are used to model, in coordinate-space, the local region of the space of the object.

b)       If the CS is a map projection or an augmented map projection, the restrictions are used to bound or otherwise limit distortions (see 5.8.3.1).

c)       The SRF may be used in conjunction with other SRFs to form an atlas for a large region (see 8.7 SRF sets). In this case, the restrictions are used to control the pair-wise overlap of the spatial coverage of members of the SRF collection.

d)       If the CS generating function (or map projection mapping equations) or the inverse function(s) have been implemented with a numerical approximation, the restrictions are used to control error bounds.

The extended valid-region is used primarily for overlapping regions in forming an atlas as in (c) above. Not all properties of the SRF that are true in the valid-region will necessarily be true in the extended valid-region. In particular, a distortion error bound that holds in the valid-region may not hold in the extended valid-region.

A valid-region may be described and/or specified. A valid-region description is a descriptive statement of the region such as the spatial boundary of a named political entity.

EXAMPLE 1         “The German state of Baden-Wurttemberg” and “The Baltic Sea” are valid-region descriptions.

In this International Standard, a valid-region specification is a finite (or empty) list of coordinate-component constraints of the form:

kth coordinate-component belongs to a non-empty interval of real numbersformula or figure.

An extended valid-region specification is a finite (or empty) list of coordinate-component constraints of the form:

kth coordinate-component belongs to an interval of real numbersformula or figure, where formula or figure has been specified andformula or figure.

Angular coordinate-component intervals shall be evaluated modulo 2p to represent an interval of the unit circle. Thus, formula or figure

In the case of an SRF with an oblate ellipsoid (or sphere) based ORM, celestiodetic coordinates may be similarly constrained. In particular, valid-region specifications for a map projection based SRF may specify coordinate-component constraints for easting, northing, latitude, and/or longitude. Celestiodetic longitude intervals shall be evaluated modulo 2π. In particular, if the interval limits satisfyformula or figure, then:

                                                                formula or figure

EXAMPLE 2         The SRF is based on a transverse Mercator map projection (see SRFT TRANSVERSE_MERCATOR).
Valid-region specification:                         0 ≤
u ≤ 10 000 000,          0 ≤ v ≤ 500 000
Extended valid-region specification:        -100 <
u,                            -100 < v
In this example, formula or figureand formula or figureare closed bounded intervals, and formula or figureand formula or figureare open semi-bounded intervals.

EXAMPLE 3         The SRF is based on a transverse Mercator map projection (see SRFT TRANSVERSE_MERCATOR).
Valid-region specification:                         -78º ≤ λ < -72º,          0º ≤ θ < 84º
Extended valid-region specification:        -78,5º ≤
λ < -71,5º
In this example, formula or figureand formula or figureare left-closed, right-open bounded intervals, as is formula or figure. formula or figureis not specified. This indicates that there are no constraints for latitude (except for the CS domain definition) in the extended valid-region specification.

8.4  SRF induced surface spatial reference frame

In the case of an SRF specified with the combination of a 3D ORM and a 3D CS, the 3D CS induces a surface CS on each coordinate-component surface (see 5.5.2). An SRF specification may optionally identify the 3rd coordinate-component as the vertical coordinate-component for the SRF. In that case, the surface CS induced on the zero-value vertical coordinate-component surface is the induced surface SRF for the specification. The vertical coordinate-component is optionally specified in the coordinate-component name specification element of the SRF.

The CS GEODETIC and the CS PLANETODETIC 3rd coordinate-components (h: ellipsoidal height), and the 3rd coordinate-component of any augmented map projection CS (h: ellipsoidal height) are identified in this International Standard as the vertical coordinate-component. When an SRF is specified with any of these 3D CSs, the h = 0 coordinate-component surface coincides with the surface of the oblate ellipsoid (or sphere) RD of the ORM. Any SRF based on these CSs intrinsically specifies the corresponding surface CS on the oblate ellipsoid (or sphere) RD surface.

An SRF realized from the SRF template LOCAL_TANGENT_SPACE_EUCLIDEAN specification (see 8.5.6) or the SRF template LOCAL_TANGENT_SPACE_CYLINDRICAL specification (see 8.5.8), the 3rd coordinate-component, height, is specified as the vertical coordinate-component. In these cases, the zero-value vertical coordinate-component surface is a plane that is tangent to the oblate ellipsoid (or sphere) RD of the ORM. SRF templates are defined in 8.5.

The zero-value 3rd coordinate-component surface of an SRF realized from the 3D CS SRF template LOCAL_TANGENT_SPACE_AZIMUTHAL_SPHERICAL specification (see 8.5.7) induces a lococentric surface azimuthal CS on the tangent plane of the SRF. For the purpose of specifying an induced surface reference frame, the 3rd coordinate-component q, depression/elevation angle, is specified as a vertical coordinate. The zero-value vertical coordinate-component surface is a plane that is tangent to the oblate ellipsoid (or sphere) RD of the ORM.

SRF templates that are based on surface CSs that can be induced by a zero-value vertical coordinate-component surface of an SRF based on a 3D CS are not separately specified. The induced surface CS is noted in the corresponding 3D CS based SRF template specification.

NOTE          Starting with a 3D SRF, this International Standard identifies surface SRFs on coordinate-component surfaces. The relationship between a surface CS and the 3D CS which induces it is functionally similar to, but conceptually different from, the ISO 19111 concept of compound coordinate reference frame. A compound coordinate reference frame synthesizes a 3D reference frame from a surface and a vertical system. (See also 5.8.6.1 and Clause 9.)

8.5  SRF templates

8.5.1        Introduction

An spatial reference frame template (SRFT) is an abstraction of a collection of SRFs that share the same abstract CS, coordinate component names, CS parameter binding rules, and similar ORMs that model the same spatial object type. An SRF template allows for a consistent derivation of SRFs. It is not necessary that an appropriate SRFT be defined in order to define a new SRF; however in this International Standard all SRFs are derived from SRFTs. The specification elements for SRFTs are defined in Table 8.2.

Table 8.2 — SRFT specification elements

Element

Definition

SRFT label

The label of the SRF template (see 13.2.2).

SRFT code

The code of the SRF template (see 13.2.3).

Short name and description

A short name as published or as commonly known and an optional description.

Object or object type

One or more of: abstract, physical, Earth, planet, satellite, and Sun; and, optionally, additional restrictions.

ORM constraint

Criteria for allowable ORMs.

CS label

The label of a CS of compatible type.

CS coordinate-component names and/or symbols

SRF-specific names and/or symbols for the kth coordinate-component names and/or symbols. If all coordinate-component names and symbols are the same as the CS, the phrase “Same as the CS.” shall be used. The vertical coordinate-component shall be designated in this specification element if applicable.

Template parameters

CS and RD parameters, if any, and/or SRF parameters that are not specified by a CS parameter binding rule.

CS parameter binding rules

A set of rules for binding for CS parameters and ORM component RD parameters, if any, and/or SRF parameters.

Coordinate valid-region

Optional restriction of the domain of the CS to a valid-region. If a valid-region is specified, optionally an extended valid-region. If both are unspecified, then there are no additional constraints on coordinate validity.

Notes

Optional, additional, non-normative information such as a description of the SRF structure, modelled region, intended use, and/or application domain.

References

The references (see 13.2.5).

 

This International Standard specifies a collection of SRFTs as identified in Table 8.3. Additional SRFTs may be registered in accordance with Clause 13. Registered SRFs shall be derived only from standardized or registered SRFTs.

Table 8.3 — SRFT directory

CS type

Short name

SRFT label

3D

Celestiocentric

CELESTIOCENTRIC

Local space rectangular 3D

LOCAL_SPACE_RECTANGULAR_3D

Celestiodetic

CELESTIODETIC

Planetodetic

PLANETODETIC

Local tangent space Euclidean

LOCAL_TANGENT_SPACE_EUCLIDEAN

Local tangent space azimuthal spherical

LOCAL_TANGENT_SPACE_AZIMUTHAL_SPHERICAL

Local tangent space cylindrical

LOCAL_TANGENT_SPACE_CYLINDRICAL

Lococentric Euclidean 3D

LOCOCENTRIC_EUCLIDEAN_3D

Celestiomagnetic

CELESTIOMAGNETIC

Equatorial inertial

EQUATORIAL_INERTIAL

Solar ecliptic

SOLAR_ECLIPTIC

Solar equatorial

SOLAR_EQUATORIAL

Solar magnetic ecliptic

SOLAR_MAGNETIC_ECLIPTIC

Solar magnetic

SOLAR_MAGNETIC_DIPOLE

Heliospheric Aries ecliptic

HELIOSPHERIC_ARIES_ECLIPTIC

Heliospheric Earth ecliptic

HELIOSPHERIC_EARTH_ECLIPTIC

Heliospheric Earth equatorial

HELIOSPHERIC_EARTH_EQUATORIAL

Surface (map projection) and 3D (augmented map projection)

Mercator

MERCATOR

Oblique Mercator spherical

OBLIQUE_MERCATOR_SPHERICAL

Transverse Mercator

TRANSVERSE_MERCATOR

Lambert conformal conic

LAMBERT_CONFORMAL_CONIC

Polar stereographic

POLAR_STEREOGRAPHIC

Equidistant cylindrical

EQUIDISTANT_CYLINDRICAL

Surface

Surface celestiodetic (induced)

CELESTIODETIC

Surface planetodetic (induced)

PLANETODETIC

Local tangent plane Euclidean (induced)

LOCAL_TANGENT_SPACE_EUCLIDEAN

Local tangent plane azimuthal (induced)

LOCAL_TANGENT_SPACE_AZIMUTHAL_SPHERICAL

Local tangent plane polar (induced)

LOCAL_TANGENT_SPACE_CYLINDRICAL

2D

Local space rectangular 2D

LOCAL_SPACE_RECTANGULAR_2D

Local space azimuthal

LOCAL_SPACE_AZIMUTHAL_2D

Local space polar

LOCAL_SPACE_POLAR_2D

 

8.5.2        Celestiocentric SRFT

Celestiocentric SRFs shall be derived from the SRFT specified in Table 8.4.

Table 8.4 — Celestiocentric SRFT

Element

Specification

SRFT label

CELESTIOCENTRIC

SRFT code

1

Short name and description

celestiocentric SRFT
The generalization of geocentric spatial reference frames to include non-Earth objects.

Object type

physical

ORM constraint

Shall be derived from any 3D ORM.

CS label

EUCLIDEAN_3D

CS coordinate-component
names and/or symbols

The same as the CS.

Template parameters

none

CS parameter binding rules

None (no CS parameters).

Coordinate valid-region

No additional restrictions.

Notes

When the object is Earth, this SRFT is referred to as a geocentric SRFT.

References

[EDM]

 

8.5.3        Local space rectangular 3D SRFT

Local space rectangular SRFs shall be derived from the SRFT specified in Table 8.5.

Table 8.5 — Local space rectangular 3D SRFT

Element

Specification

SRFT label

LOCAL_SPACE_RECTANGULAR_3D

SRFT code

2

Short name and description

local space rectangular 3D SRFT
A 3D Euclidean spatial reference frame for an abstract 3D space.

Object type

3D abstract object.

ORM constraint

Shall be an ORM for a 3D abstract object.

CS label

LOCOCENTRIC_EUCLIDEAN_3D

CS coordinate-component
names and/or symbols

The same as the CS.

Template parameters

r = vector direction of forward (forward axis).
s = vector direction of up (up axis).

CS parameter binding rules

formula or figure

Coordinate valid-region

No additional restrictions.

Notes

CAD/CAM and other engineering applications.

References

[EDM]

 

8.5.4        Celestiodetic SRFT

Celestiodetic SRFs shall be derived from the SRFT specified in Table 8.6.

Table 8.6 — Celestiodetic SRFT

Element

Specification

SRFT label

CELESTIODETIC

SRFT code

3

Short name and description

celestiodetic SRFT
The generalization of geodetic SRFs to include other planets and ellipsoidal bodies.

Object type

physical

ORM constraint

Shall be derived from:
ORMT OBLATE_ELLIPSOID or
ORMT SPHERE

CS label

GEODETIC

CS coordinate-component names and/or symbols

The same as the CS.
The vertical coordinate-component is ellipsoidal height (
h).

Template parameters

none

CS parameter binding rules

CS parameters match RD values.
    Oblate ellipsoid RD case with major semi-axis
a and inverse flattening f -1:

       formula or figure
    Sphere RD case with radius
r :
       formula or figure

Coordinate valid-region

No additional restrictions.

Notes

1)       The SURFACE_GEODETIC CS is induced on the oblate ellipsoid (or sphere) RD surface.

2)       When the object is Earth, this SRFT is referred to as a geodetic SRFT.

References

[HEIK]

 

8.5.5        Planetodetic SRFT

Planetodetic SRFs shall be derived from the SRFT specified in Table 8.7.

Table 8.7Planetodetic SRFT

Element

Specification

SRFT label

PLANETODETIC

SRFT code

4

Short name and description

planetodetic SRFT
Similar to celestiodetic SRFT with reversed direction for longitude.

Object type

planet

ORM constraint

Shall be derived from:
ORMT OBLATE_ELLIPSOID or
ORMT SPHERE

CS label

PLANETODETIC

CS coordinate names and/or symbols

The same as the CS.
The vertical coordinate-component is ellipsoidal height (h).

Template parameters

none

CS parameter binding rules

CS parameters match RD values:
    Oblate ellipsoid RD case with major semi axis
a and inverse flattening f -1:

       formula or figure
    Sphere RD case with radius
r :
       formula or figure

Coordinate valid region

No additional restrictions

Notes

Planetary science applications

References

[RIIC]

 

8.5.6        Local tangent space Euclidean SRFT

Local tangent space Euclidean SRFs shall be derived from the SRFT specified in Table 8.8. The case with template parameters a = 0 and h0 = 0 is illustrated in Figure 8.2.

Table 8.8 — Local tangent space Euclidean SRFT

Element

Specification

SRFT label

LOCAL_TANGENT_SPACE_EUCLIDEAN

SRFT code

5

Short name and description

local tangent space Euclidean SRFT
Euclidean 3D spatial CS with the zero 3rd coordinate-component surface that is tangent to the oblate ellipsoid RD and with CS natural origin at the tangent point.

Object type

physical

ORM constraint

Shall be derived from:
ORMT OBLATE_ELLIPSOID or
ORMT SPHERE

CS label

LOCOCENTRIC_EUCLIDEAN_3D

CS coordinate-component names and/or symbols

u: x (x)
v: y (y)
w: height (h) is the vertical coordinate-component.

Template parameters

formula or figure

CS parameter binding rules

formula or figure

Coordinate valid-region

No additional restrictions.

Notes

1)       The LOCOCENTRIC_SURFACE_EUCLIDEAN CS is induced on the tangent plane surface.

2)       The w = -h0 coordinate-component plane21 is tangent to the oblate ellipsoid RD at the point with surface celestiodetic coordinate (λ,φ).

3)       α is the geodetic azimuth of the v-axis (see Figure 8.2).

4)       h0 is the ellipsoidal height of the CS origin.

References

[EDM]


formula or figure

Figure 8.2Local tangent space Euclidean SRFT

 

8.5.7        Local tangent space azimuthal spherical SRFT

Local tangent space azimuthal spherical SRFs shall be derived from the SRFT specified in Table 8.9.

Table 8.9 — Local tangent space azimuthal spherical SRFT

Element

Specification

SRFT label

LOCAL_TANGENT_SPACE_AZIMUTHAL_SPHERICAL

SRFT code

6

Short name and description

local tangent space azimuthal spherical SRFT
Azimuthal spherical spatial CS with the zero 3rd coordinate-component surface that is tangent to the oblate ellipsoid RD and with CS natural origin at the tangent point.

Object type

physical

ORM constraint

Shall be derived from:
ORMT OBLATE_ELLIPSOID or
ORMT SPHERE

CS label

LOCOCENTRIC_AZIMUTHAL_SPHERICAL

CS coordinate-component
names and/or symbols

The same as the CS.

θ: depression/elevation angle, is the vertical coordinate-component.

Template parameters

formula or figure

CS parameter binding rules

formula or figure

Coordinate valid-region

No additional restrictions.

Notes

1)       Used in radar localization.

2)       h0 is the ellipsoidal height of the CS origin.

3)       α is the geodetic azimuth of the v-axis (see Figure 8.2).

References

[EDM]

 

8.5.8        Local tangent space cylindrical SRFT

Local tangent space cylindrical SRFs shall be derived from the SRFT specified in Table 8.10.

Table 8.10 — Local tangent space cylindrical SRFT

Element

Specification

SRFT label

LOCAL_TANGENT_SPACE_CYLINDRICAL

SRFT code

7

Short name and description

local tangent space cylindrical SRFT
cylindrical
spatial CS with the zero 3rd coordinate-component surface that is tangent to the oblate ellipsoid RD and with CS natural origin at the tangent point.

Object type

physical

ORM constraint

Shall be derived from:
ORMT OBLATE_ELLIPSOID or
ORMT SPHERE

CS label

LOCOCENTRIC_CYLINDRICAL

CS coordinate-component
names and/or symbols

formula or figure

Template parameters

formula or figure

CS parameter binding rules

formula or figure

Coordinate valid-region

No additional restrictions.

Notes

1)         The LOCOCENTRIC_SURFACE_POLAR CS is induced on the tangent plane surface.

2)         The w = -h0 coordinate-component plane21 is tangent to the oblate ellipsoid RD at the point with surface celestiodetic coordinate (λ,φ).

3)         α is the geodetic azimuth of the v-axis (see Figure 8.2).

4)         h0 is the ellipsoidal height of the CS origin.

References

[EDM]

 

8.5.9        Lococentric Euclidean 3D SRFT

Lococentric Euclidean 3D SRFs shall be derived from the SRFT specified in Table 8.11.

Table 8.11 — Lococentric Euclidean 3D SRFT

Element

Specification

SRFT label

LOCOCENTRIC _EUCLIDEAN_3D

SRFT code

8

Short name and description

Lococentric Euclidean 3D SRFT
Euclidean 3D spatial CS with a localised origin and axes orientations

Object type

Any 3D object

ORM constraint

Shall be derived from any 3D ORM.

CS label

LOCOCENTRIC_EUCLIDEAN_3D

CS coordinate-component names and/or symbols

The same as the CS.

Template parameters

Localization parameters:

       q: the lococentric origin,
      
r: primary axis direction, and
      
s: secondary axis direction.

Constraints:
      
r and s are orthonormal vectors.

CS parameter binding rules

The template parameters are the CS parameters

Coordinate valid-region

No additional restrictions.

Notes

1)       A CELESTIOCENTRIC SRFT is special case of an instance of this SRFT with formula or figureand a physical object.

2)       A LOCAL_SPACE_RECTANGULAR_3D SRFT is special case of an instance of this SRFT with formula or figureand an abstract object.

3)       A LOCAL_TANGENT_SPACE_EUCLIDEAN SRFT is special case of an instance of this SRFT with q, r, s, satisfying the SRFT LOCAL_TANGENT_SPACE_EUCLIDEAN CS parameter binding rules and ORM constraint.

4)       This SRTF is required for the SRM treatment of directions (see 10.5)

References

[EDM]

 

8.5.10    Celestiomagnetic SRFT

Celestiomagnetic SRFs shall be derived from the SRFT specified in Table 8.12.

Table 8.12 — Celestiomagnetic SRFT

Element

Specification

SRFT label

CELESTIOMAGNETIC

SRFT code

9

Short name and description

celestiomagnetic SRFT
A spherical CS based SRFT aligned with the magnetic dipole of a celestial object.

Object type

A planet or rotating satellite in a solar system with a magnetic dipole axis distinct from its rotational axis.

ORM constraint

Based on ORMT BI_AXIS_ORIGIN_3D and OBRS celestiomagnetic.

CS label

SPHERICAL

CS coordinate-component
names and/or symbols

The same as the CS.

Template parameters

none

CS parameter binding rules

none

Coordinate valid-region

No additional restrictions.

Notes

1)       See 7.5.8.

2)       When the object is Earth, this SRFT is referred to as a geomagnetic SRFT.

3)       These SRFs are typically used at radii where the magnetic field is approximated by a dipole.

References

[CRUS]

 

8.5.11    Equatorial inertial SRFT

Equatorial inertial SRFs shall be derived from the SRFT specified in Table 8.13.

Table 8.13 — Equatorial inertial SRFT

Element

Specification

SRFT label

EQUATORIAL_INERTIAL

SRFT code

10

Short name and description

equatorial Inertial SRFT
A spherical CS based SRF aligned with the equator of a planet and the direction to the Sun at the vernal equinox (at a specified epoch).

Object type

A planet in the solar system for which the ecliptic plane is distinct from the equatorial plane.

ORM constraint

Based on ORMT BI_AXIS_ORIGIN_3D and OBRS equatorial_inertial.

CS label

SPHERICAL

CS coordinate-component
names and/or symbols

λ : right ascension (ra)
θ : declination (dec)
ρ : radius or range(r)

Template parameters

none

CS parameter binding rules

none

Coordinate valid-region

No additional restrictions.

Notes

1)       See 7.5.2.

2)       Star catalogues use right ascension and declination to specify directions.

References

[SEID]

 

8.5.12    Solar ecliptic SRFT

Solar ecliptic SRFs shall be derived from the SRFT specified in Table 8.14.

Table 8.14 — Solar ecliptic SRFT

Element

Specification

SRFT label

SOLAR_ECLIPTIC

SRFT code

11

Short name and description

solar ecliptic SRFT
A spherical CS based SRF aligned with the ecliptic plane of a planet and the direction of the Sun.

Object type

A planet in the solar system.

ORM constraint

Based on ORMT BI_AXIS_ORIGIN_3D and OBRS solar_ecliptic.

CS label

SPHERICAL

CS coordinate-component
names and/or symbols

The same as the CS.

Template parameters

none

CS parameter binding rules

none

Coordinate valid-region

No additional restrictions.

Notes

See 7.5.3.

References

[HAPG]

 

8.5.13    Solar equatorial SRFT

Solar equatorial SRFs shall be derived from the SRFT specified in Table 8.15.

Table 8.15 — Solar equatorial SRFT

Element

Specification

SRFT label

SOLAR_EQUATORIAL

SRFT code

12

Short name and description

solar equatorial SRFT
A spherical CS based planet centred SRF aligned with the ecliptic plane and the rotational axis of the Sun.

Object type

A planet in the solar system for which the ecliptic plane is distinct from the equatorial plane.

ORM constraint

Based on ORMT BI_AXIS_ORIGIN_3D and OBRS SOLAR_EQUATORIAL.

CS label

SPHERICAL

CS coordinate-component
names and/or symbols

The same as the CS.

Template parameters

none

CS parameter binding rules

none

Coordinate valid-region

No additional restrictions.

Notes

See 7.5.4.

References

[CRUS]

 

8.5.14    Solar magnetic ecliptic SRFT

Solar magnetic ecliptic SRFs shall be derived from the SRFT specified in Table 8.16.

Table 8.16 — Solar magnetic ecliptic SRFT

Element

Specification

SRFT label

SOLAR_MAGNETIC_ECLIPTIC

SRFT code

13

Short name and description

solar magnetic ecliptic SRFT
A Euclidean 3D CS based planet centred SRF aligned with the direction to the Sun and the plane determined by that direction and the magnetic dipole of the planet.

Object type

A planet in the solar system with a magnetic dipole.

ORM constraint

Based on ORMT BI_AXIS_ORIGIN_3D and OBRS SOLAR_MAGNETIC_ECLIPTIC.

CS label

EUCLIDEAN_3D

CS coordinate-component
names and/or symbols

The same as the CS.

Template parameters

none

CS parameter binding rules

none

Coordinate valid-region

No additional restrictions.

Notes

1)       See 7.5.9.

2)       In the case of planet Earth, this STF is also known as a geocentric solar magnetospheric SRF.

References

[CRUS]

 

8.5.15    Solar magnetic dipole SRFT

Solar magnetic dipole SRFs shall be derived from the SRFT specified in Table 8.17.

Table 8.17 — Solar magnetic dipole SRFT

Element

Specification

SRFT label

SOLAR_MAGNETIC_DIPOLE

SRFT code

14

Short name and description

solar magnetic dipole SRFT
A Euclidean 3D CS based planet centred SRF with the z-axis aligned with the  magnetic dipole and the xz-plane containing the Sun.

Object type

A planet in the solar system with a magnetic dipole axis distinct from its rotational axis.

ORM constraint

Based on ORMT BI_AXIS_ORIGIN_3D and OBRS SOLAR_MAGNETIC_DIPOLE.

CS label

EUCLIDEAN_3D

CS coordinate-component
names and/or symbols

The same as the CS.

Template parameters

none

CS parameter binding rules

none

Coordinate valid-region

No additional restrictions.

Notes

See 7.5.10.

References

[CRUS] , [BHAV]

 

8.5.16    Heliospheric Aries ecliptic SRFT

Heliospheric Aries ecliptic SRFs shall be derived from the SRFT specified in Table 8.18.

Table 8.18 — Heliospheric Aries ecliptic SRFT

Element

Specification

SRFT label

HELIOSPHERIC_ARIES_ECLIPTIC

SRFT code

15

Short name and description

Heliospheric Aries ecliptic SRFT
A spherical CS based Sun centred SRF with zero spherical latitude aligned with the ecliptic plane and zero longitude aligned to the first point of Aries.

Object type

Sun.

ORM constraint

Based on ORMT BI_AXIS_ORIGIN_3D and OBRS heliocentric_ARIES_ecliptic.

CS label

SPHERICAL

CS coordinate-component
names and/or symbols

The same as the CS.

Template parameters

none

CS parameter binding rules

none

Coordinate valid-region

No additional restrictions.

Notes

See 7.5.5.

References

[HAPG]

 

8.5.17    Heliospheric Earth ecliptic SRFT

Heliospheric Earth ecliptic SRFs shall be derived from the SRFT specified in Table 8.19.

Table 8.19 — Heliospheric Earth ecliptic SRFT

Element

Specification

SRFT label

HELIOSPHERIC_EARTH_ECLIPTIC

SRFT code

16

Short name and description

heliospheric Earth ecliptic SRFT
A spherical CS based Sun centred SRF with zero spherical latitude aligned with the ecliptic plane and zero longitude aligned to the centre of the Earth.

Object type

Sun.

ORM constraint

Based on ORMT BI_AXIS_ORIGIN_3D and OBRS Heliocentric_Planet_Ecliptic.

CS label

SPHERICAL

CS coordinate-component
names and/or symbols

The same as the CS.

Template parameters

none

CS parameter binding rules

none

Coordinate valid-region

No additional restrictions.

Notes

See 7.5.6.

References

[HAPG]

 

8.5.18    Heliospheric Earth equatorial SRFT

Heliospheric Earth equatorial SRFs shall be derived from the SRFT specified in Table 8.20.

Table 8.20 — Heliospheric Earth equatorial SRFT

Element

Specification

SRFT label

HELIOSPHERIC_EARTH_EQUATORIAL

SRFT code

17

Short name and description

heliospheric Earth equatorial SRFT
A spherical CS based Sun centred SRF with zero spherical latitude aligned with the equator of the Sun and zero longitude aligned to the centre of the Earth.

Object type

Sun.

ORM constraint

Based on ORMT BI_AXIS_ORIGIN_3D and OBRS Heliocentric_Planet_Equatorial with respect to Earth.

CS label

SPHERICAL

CS coordinate-component
names and/or symbols

The same as the CS.

Template parameters

none

CS parameter binding rules

none

Coordinate valid-region

No additional restrictions.

Notes

See 7.5.7.

References

[HAPG]

 

8.5.19    Mercator SRFT

Mercator SRFs shall be derived from the SRFT specified in Table 8.21.

Table 8.21 — Mercator SRFT

Element

Specification

SRFT label

MERCATOR

SRFT code

18

Short name and description

Mercator SRFT.
A Mercator and augmented Mercator map projection of the oblate or sphere RD component of the ORM.

Object type

physical

ORM constraint

Shall be derived from:
ORMT OBLATE_ELLIPSOID or
ORMT SPHERE

CS label

MERCATOR

CS coordinate-component
names and/or symbols

Same as the CS.
h: ellipsoidal height is the vertical coordinate-component.

Template parameters

formula or figure

CS parameter binding rules

CS parameters match RD values:
 Oblate ellipsoid RD case -
   Major semi-axis
a, formula or figure
 Sphere RD case -
   Radius
a, formula or figure

Coordinate valid-region

No additional restrictions.

Notes

1.       The augmented Mercator CS induces the Mercator CS on the zero-value vertical coordinate-component surface (which coincides with the RD surface).

2.       True scale (point distortion = 1) may be specified at a given latitude formula or figureby setting: formula or figure

References

[SNYD]

 

8.5.20    Oblique Mercator spherical SRFT

Oblique Mercator spherical SRFs shall be derived from the SRFT specified in Table 8.22.

Table 8.22 — Oblique Mercator spherical SRFT

Element

Specification

SRFT label

OBLIQUE_MERCATOR_SPHERICAL

SRFT code

19

Short name and description

Oblique Mercator SRFT for a sphere ORM.
An oblique Mercator and augmented oblique Mercator map projection of the sphere RD component of the ORM.

Object type

physical

ORM constraint

Shall be derived from ORMT SPHERE.

CS label

OBLIQUE_MERCATOR_SPHERICAL

CS coordinate-component
names and/or symbols

Same as the CS.
h: ellipsoidal height is the vertical coordinate-component.

Template parameters

formula or figure

formula or figure

formula or figure

CS parameter binding rules

The CS parameter R matches the RD value:
 Radius
R = r.

formula or figure

Coordinate valid-region

No additional restrictions.

Notes

The augmented oblique Mercator CS induces the oblique Mercator CS on the zero-value vertical coordinate-component surface (which coincides with the RD surface).

References

[SNYD]

 

8.5.21    Transverse Mercator SRFT

Transverse Mercator SRFs shall be derived from the SRFT specified in Table 8.23.

Table 8.23 — Transverse Mercator SRFT

Element

Specification

SRFT label

TRANSVERSE_MERCATOR

SRFT code

20

Short name and description

Transverse Mercator SRFT
A transverse Mercator and augmented transverse Mercator map projection of the oblate or sphere RD component of the ORM.

Object type

physical

ORM constraint

Shall be derived from:
ORMT OBLATE_ELLIPSOID or
ORMT SPHERE

CS label

TRANSVERSE_MERCATOR

CS coordinate-component
names and/or symbols

Same as the CS.
h: ellipsoidal height is the vertical coordinate-component.

Template parameters

formula or figure

CS parameter binding rules

CS parameters match RD values:
 Oblate ellipsoid RD case -
   Major semi-axis
a, formula or figure
 Sphere RD case -
   Radius
a, formula or figure

Coordinate valid-region

No additional restrictions.

Notes

The augmented transverse Mercator CS induces the transverse Mercator CS on the zero-value vertical coordinate-component surface (which coincides with the RD surface).

References

[SNYD]

 

8.5.22    Lambert conformal conic SRFT

Lambert conformal conic SRFs shall be derived from the SRFT specified in Table 8.24.

Table 8.24 — Lambert conformal conic SRFT

Element

Specification

SRFT label

LAMBERT_CONFORMAL_CONIC

SRFT code

21

Short name and description

Lambert conformal conic SRFT
A Lambert conformal conic and augmented Lambert conformal conic map projection of the oblate or sphere RD component of the ORM.

Object type

physical

ORM constraint

Shall be derived from:
ORMT OBLATE_ELLIPSOID or
ORMT SPHERE

CS label

LAMBERT_CONFORMAL_CONIC

CS coordinate-component
names and/or symbols

Same as the CS.
h: ellipsoidal height is the vertical coordinate-component.

Template parameters

formula or figure

CS parameter binding rules

CS parameters match RD values:
 Oblate ellipsoid RD case -
   Major semi-axis
a, formula or figure
 Sphere RD case -
   Radius
a, formula or figure

Coordinate valid-region

No additional restrictions.

Notes

The augmented Lambert conformal conic CS induces the Lambert conformal conic CS on the zero-value vertical coordinate-component surface (which coincides with the RD surface).

References

[SNYD]

 

8.5.23    Polar stereographic SRFT

Polar stereographic SRFs shall be derived from the SRFT specified in Table 8.25.

Table 8.25 — Polar stereographic SRFT

Element

Specification

SRFT label

POLAR_STEREOGRAPHIC

SRFT code

22

Short name and description

Polar stereographic SRFT
A polar stereographic and augmented polar stereographic map projection of the oblate or sphere RD component of the ORM.

Object type

physical

ORM constraint

Shall be derived from:
ORMT OBLATE_ELLIPSOID or
ORMT SPHERE

CS label

POLAR_STEREOGRAPHIC

CS coordinate-component
names and/or symbols

Same as the CS.
h: ellipsoidal height is the vertical coordinate-component.

Template parameters

formula or figure

CS parameter binding rules

CS parameters match RD values:
 Oblate ellipsoid RD case -
   Major semi-axis
a, formula or figure
 Sphere RD case -
   Radius
a, formula or figure

formula or figure

Coordinate valid-region

No additional restrictions.

Notes

1.       The augmented polar stereographic CS induces the polar stereographic CS on the zero-value vertical coordinate-component surface (which coincides with the RD surface).

2.       True scale (point distortion = 1) may be specified at a given latitude formula or figureby setting: formula or figure

References

[SNYD]

 

8.5.24    Equidistant cylindrical SRFT

Equidistant cylindrical SRFs shall be derived from the SRFT specified in Table 8.26.

Table 8.26 — Equidistant cylindrical SRFT

Element

Specification

SRFT label

EQUIDISTANT_CYLINDRICAL

SRFT code

23

Short name and description

equidistant cylindrical SRFT
A equidistant cylindrical and augmented equidistant cylindrical map projection of the sphere RD component of the ORM.

Object type

physical

ORM constraint

Shall be derived from ORMT OBLATE_ELLIPSOID or
ORMT SPHERE.

CS label

EQUIDISTANT_CYLINDRICAL

CS coordinate-component
names and/or symbols

Same as the CS.
h: ellipsoidal height is the vertical coordinate-component.

Template parameters

formula or figure

CS parameter binding rules

CS parameters match RD values:
Oblate ellipsoid RD case -
   Major semi-axis
a, formula or figure
 Sphere RD case -
   Radius
a, formula or figure

Coordinate valid-region

No additional restrictions.

Notes

1.       The augmented equidistant cylindrical CS induces the equidistant cylindrical CS on the zero-value vertical coordinate-component surface (which coincides with the RD surface).

2.       Longitudinal point distortion may be set to one at a given latitude formula or figureby setting: formula or figure

References

[SNYD]

 

8.5.25    Local space rectangular 2D SRFT

Local space rectangular 2D SRFs shall be derived from the SRFT specified in Table 8.27.

Table 8.27 — Local space rectangular 2D SRFT

Element

Specification

SRFT label

LOCAL_SPACE_RECTANGULAR_2D

SRFT code

24

Short name and description

local space rectangular 2D SRFT
A 2D Euclidean spatial reference frame for an abstract 2D space.

Object type

2D abstract object

ORM constraint

Shall be an ORM for a 2D abstract object.

CS label

LOCOCENTRIC_EUCLIDEAN_2D

CS coordinate-component
names and/or symbols

The same as the CS.

Template parameters

r = vector direction of forward (forward axis).

CS parameter binding rules

formula or figure

formula or figure

Coordinate valid-region

No additional restrictions.

Notes

CAD/CAM and 2D graphic applications.

References

[EDM]

 

8.5.26    Local Space azimuthal 2D SRFT

Azimuthal 2D SRFs shall be derived from the SRFT specified in Table 8.28.

Table 8.28 — Local Space azimuthal 2D SRFT

Element

Specification

SRFT label

LOCAL_SPACE_AZIMUTHAL_2D

SRFT code

25

Short name and description

Local space azimuthal 2D SRFT
An azimuthal CS based SRF for 2D abstract space.

Object type

Abstract object

ORM constraint

Shall be an ORM for a 2D abstract object.

CS label

AZIMUTHAL

CS coordinate-component
names and/or symbols

The same as the CS.

Template parameters

none

CS parameter binding rules

none

Coordinate valid-region

No additional restrictions.

Notes

none

References

[EDM]

 

8.5.27    Local space Polar 2D SRFT

Polar 2D SRFs shall be derived from the SRFT specified in Table 8.29.

Table 8.29 — Local space Polar 2D SRFT

Element

Specification

SRFT label

LOCAL_SPACE_POLAR_2D

SRFT code

26

Short name and description

Local space polar 2D SRFT
A polar CS based SRF for 2D abstract space.

Object type

Abstract object

ORM constraint

Shall be an ORM for a 2D abstract object.

CS label

POLAR

CS coordinate-component
names and/or symbols

The same as the CS.

Template parameters

none

CS parameter binding rules

none

Coordinate valid-region

No additional restrictions.

Notes

none

References

[EDM]

 

8.6  Standardized SRFs

This International Standard specifies a collection of SRFs. These specifications appear in Table 8.32 through Table 8.45. Table 8.31 is a directory of these specifications. These SRFs are each derived from a SRFT. Additional SRFs derived from SRFTs may be registered in accordance with Clause 13.

8.6.1        Introduction

The specification elements for SRFs are defined in Table 8.30.

Table 8.30 — Standardized SRF specification elements

Element

Definition

SRF label

The label of the SRF (see 13.2.2).

SRF code

The code of the SRF (see 13.2.3).

Short name

A short name as published or as commonly known and an optional description.

SRF template

The label of the applicable SRF template.

ORM

The label of the applicable ORM.

Valid-region

Optional restriction of the domain of the CS to a valid-region description and/or a valid-region specification. If a valid-region is specified, optionally, an extended valid-region may be specified. Valid-region specifications and extended valid-region specifications are specified by value or by reference. Terms appearing in the references that are cited for a value shall be enclosed in brackets ( { } ).

Parameter values

The SRF template parameter values specified by value or by reference. If by reference, this specification element shall contain a citation(s) for the SRF template parameters values. Terms appearing in the references that are cited for a value shall be enclosed in brackets ( { } ). Any parameter value that is not specified in the citation(s) shall be specified by value.

Notes

Optional, additional, non-normative information concerning the SRF, such as a description of its structure, modelled region, intended use, and/or application domain.

References

The references (see 13.2.5).

 

Table 8.31 —  Directory of standardized SRFs

Short name

SRF label

British national grid

BRITISH_NATIONAL_GRID_AIRY

UK ordnance survey GRS80 grid.

BRITISH_OSGRS80_GRID

Delaware (US) state plane coordinate system

DELAWARE_SPCS_1993

Geocentric WGS 1984

GEOCENTRIC_WGS_1984

Geodetic Australia 1984

GEODETIC_AUSTRALIA_1984

Geodetic WGS 1984

GEODETIC_WGS_1984

Geodetic north american 1983

GEODETIC_N_AMERICAN_1983

Irish grid

IRISH_GRID_1965

Irish transverse Mercator

IRISH_TRANSVERSE_MERCATOR_1989

Lambert-93

LAMBERT_93

Lambert II étendu (Lambert II wide)

LAMBERT_II_WIDE

Mars planetocentric

MARS_PLANETOCENTRIC_2000

Mars planetodetic

MARS_PLANETOGRAPHIC_2000

Maryland (US) state plane coordinate system

MARYLAND_SPCS_1983

 

8.6.2        British national grid

Table 8.32 — British national grid SRF

Element

Specification

Element

Specification

SRF label

BRITISH_NATIONAL_GRID_AIRY

SRF code

1

Short name

British national grid. A transverse Mercator projection using the AIRY_1830 ellipsoid.

SRF template

TRANSVERSE_MERCATOR

ORM

OSGB_1936

Valid-region

Valid-region description:
    Great Britain.

Parameter values

longitude of origin: λorigin = -2º
latitude of origin:
φorigin = 49º
central scale:
k0 =  0,999 601 271 7
false easting:
uF =  -400 000 m
false northing:
vF = 100 000 m

Notes

Also known as the UK national projection.

References

[OSTM, Section 7, "National projection"]

 

8.6.3        UK ordnance survey GRS80 grid

Table 8.33 — UK ordnance survey GRS80 grid SRF

Element

Specification

Element

Specification

SRF label

BRITISH_OSGRS80_GRID

SRF code

2

Short name

UK ordnance survey GRS80 grid. A transverse Mercator projection using the GRS_1980 ellipsoid.

SRF template

TRANSVERSE_MERCATOR

ORM

ETRS_1989

Valid-region

Valid-region description:
    Great Britain.

Parameter values

longitude of origin: λorigin = -2º
latitude of origin:
φorigin = 49º
central scale:
k0 =  0,999 601 271 7
false easting:
uF =  -400 000 m
false northing:
vF = 100 000 m

Notes

Also known as the OSGRS80 grid.

References

[OSTM, Section 7, " OSGRS80"]

 

8.6.4        Delaware (US) state plane coordinate system

Table 8.34 — Delaware (US) state plane coordinate system SRF

Element

Specification

Element

Specification

SRF label

DELAWARE_SPCS_1983

SRF code

3

Short name

Delaware (US) state plane coordinate system

SRF template

TRANSVERSE_MERCATOR

ORM

N_AM_1983

Valid-region

Valid-region description:
    State of Delaware (US).

Parameter values

longitude of origin: λorigin =  -75º 25’
latitude of origin:
φorigin = 38º
central scale:
k0 = 1 - 1/200 000
false easting:
uF = 200 000 m
false northing:
vF = 0 m

Notes

The conventional coordinate unit is US survey feet. To convert a coordinate in metres to a grid coordinate in US survey feet, use 1m = (39,37 / 12) US survey feet.

References

[SNYD, Table 8 and Appendix C, "Delaware"]

 

8.6.5        Geocentric WGS 1984

Table 8.35 — Geocentric WGS 1984 SRF

Element

Specification

Element

Specification

SRF label

GEOCENTRIC_WGS_1984

SRF code

4

Short name

Geocentric WGS 1984

SRF template

CELESTIOCENTRIC

ORM

WGS_1984

Valid-region

Valid-region description:
    Earth,
global.

Parameter values

none

Notes

Mass centred.

References

[83502T, Chapter 2.1]

 

8.6.6        Geodetic Australia 1984

Table 8.36 — Geodetic Australia 1984 SRF

Element

Specification

Element

Specification

SRF label

GEODETIC_AUSTRALIA_1984

SRF code

5

Short name

Geodetic Australia 1984

SRF template

CELESTIODETIC

ORM

AUSTRALIAN_GEOD_1984

Valid-region

Valid-region description:
    Australia and Tasmania.

Parameter values

none

Notes

none

References

[CECT]

 

8.6.7        Geodetic WGS 1984

Table 8.37 — Geodetic WGS 1984 SRF

Element

Specification

Element

Specification

SRF label

GEODETIC_WGS_1984

SRF code

6

Short name

Geodetic WGS 1984

SRF template

CELESTIODETIC

ORM

WGS_1984

Valid-region

Valid-region description:
    Earth,
global.

Parameter values

none

Notes

none

References

[83502T, Chapter 3]

 

8.6.8        Geodetic north american 1983

Table 8.38 — Geodetic north american 1983 SRF

Element

Specification

Element

Specification

SRF label

GEODETIC_N_AMERICAN_1983

SRF code

7

Short name

Geodetic north american 1983

SRF template

CELESTIODETIC

ORM

N_AM_1983

Valid-region

Valid region description:
        Continental United States

Parameter values

none

Notes

none

References

[SNYD]

 

8.6.9        Irish grid

Table 8.39 — Irish grid SRF

Element

Specification

Element

Specification

SRF label

IRISH_GRID_1965

SRF code

8

Short name

Irish grid

SRF template

TRANSVERSE_MERCATOR

ORM

IRELAND_1965

Valid-region

Valid-region description:
    Ireland.

Parameter values

longitude of origin: λorigin = -8º
latitude of origin:
φorigin = 53º 30’
central scale:
k0 = 1,000 035
false easting:
uF = 200 000 m
false northing:
vF = 250 000 m

Notes

The Irish Grid has developed over more than two hundred years and is the coordinate reference system used in Ireland.

References

[IGRID, "The Transverse Mercator Map Projection"]

 

8.6.10    Irish transverse Mercator

Table 8.40 — Irish transverse Mercator SRF

Element

Specification

Element

Specification

SRF label

IRISH_TRANSVERSE_MERCATOR_1989

SRF code

9

Short name

Irish transverse Mercator

SRF template

TRANSVERSE_MERCATOR

ORM

ETRS_1989

Valid-region

Valid-region description:
    Ireland.

Parameter values

longitude of origin: λorigin = -8º
latitude of origin:
φorigin = 53º 30’
central scale:
k0 = 0,999 820
false easting:
uF = 600 000 m
false northing:
vF = 750 000 m

Notes

A newly derived projection designed for GPS compatibility. The longitude and latitude of origin defined in the Irish Grid are maintained.

References

[NMPI, Table 1, "ITM"]

 

8.6.11    Lambert-93

Table 8.41 — Lambert-93 SRF

Element

Specification

Element

Specification

SRF label

LAMBERT_93

SRF code

10

Short name

Lambert-93

SRF template

LAMBERT_CONFORMAL_CONIC

ORM

RGF_1993

Valid-region

Valid-region description:
    France.

Parameter values

First parallel: f1  = 44º
Second parallel:
f2  = 49º
Longitude of origin: λorigin =

Latitude of origin:
φorigin = 46º 30’
False easting:
uF = 700 000 m
False northing:
vF = 6 600 000 m

Notes

Originally specified in September 1996.

References

[PASG, "Caractéristiques de la projection conique conforme (projection dite de Lambert)"]

 

8.6.12    Lambert II étendu (Lambert II wide)

Table 8.42 — Lambert II étendu (Lambert II wide) SRF

Element

Specification

Element

Specification

SRF label

LAMBERT_II_WIDE

SRF code

11

Short name

Lambert II étendu (Lambert II wide)

SRF template

LAMBERT_CONFORMAL_CONIC

ORM

NTF_1896_PM_PARIS

Valid-region

Valid-region description:
    France.

Parameter values

First parallel: f1  = 45º 53’ 56,108”
Second parallel:
f2  = 47º 41’ 45,652”
Longitude of origin: λorigin =

Latitude of origin:
φorigin = 46º 48’
False easting:
uF = 600 000 m
False northing:
vF = 2 200 000 m

Notes

An extension of Lambert Zone II to cover all of France. Note that the prime meridian of the ORM is Paris (not Greenwich).

References

[LIIE, "Valeurs pour le calcul des coordonnes en projection Lambert de l'ellipsoïde de Clarke 1880 IGN.", "Zone lambert: II étendu"]

 

8.6.13    Mars planetocentric

Table 8.43 — Mars planetocentric SRF

Element

Specification

Element

Specification

SRF label

MARS_PLANETOCENTRIC_2000

SRF code

12

Short name

Mars planetocentric

SRF template

CELESTIODETIC

ORM

MARS_SPHERE_2000

Valid-region

Valid-region description:
   Mars,
global.

Parameter values

none

Notes

1)       Also referred to as "east/'ocentric"; adopted as the basis for current map production by the United States Geological Survey (USGS), National Aeronautics and Space Administration (NASA, US), and the European Space Agency (ESA).

2)       Spherical latitude coincides with geodetic latitude.

References

[DUXB]

 

8.6.14    Mars planetographic

Table 8.44 — Mars planetographic SRF

Element

Specification

Element

Specification

SRF label

MARS_PLANETOGRAPHIC_2000

SRF code

13

Short name

Mars planetodetic

SRF template

PLANETODETIC

ORM

MARS_2000

Valid-region

Valid-region description:
   Mars,
global.

Parameter values

none

Notes

1)       Also referred to as "west/'ographic"; used historically for map production.

2)       Planetodetic longitude is positive westwards.

References

[DUXB]

 

8.6.15    Maryland (US) state plane coordinate system

Table 8.45 — Maryland (US) state plane coordinate system SRF

Element

Specification

Element

Specification

SRF label

MARYLAND_SPCS_1983

SRF code

14

Short name

Maryland (US) state plane coordinate system

SRF template

LAMBERT_CONFORMAL_CONIC

ORM

N_AM_1983

Valid-region

Valid-region description:
    State of Maryland (US).

Parameter values

First parallel: f1 = 38º 18’
Second parallel:
f2 = 39º 27’
Longitude of origin: λorigin = -
77º
Latitude of origin:
φorigin = 37º 50’
False easting:
uF = 400 000 m
False northing:
vF = 0 m

Notes

The conventional coordinate unit is US survey feet. To convert a coordinate in metres to a grid coordinate in US survey feet, use 1m = (39,37 / 12) US survey feet.

References

[SNYD, Table 8 and Appendix C, "Maryland"]


8.7  Standardized SRF sets

8.7.1        Introduction

A spatial reference frame set (SRFS)  for an ORM is a finite parameterized set of two or more spatial reference frames that:

a)       are derived from the same SRF template using the given ORM, and

b)       the valid-regions of the set members have non-overlapping interiors.

An SRF set specification may further restrict the ORM constraints of the SRFT. The specification elements for SRF sets are defined in Table 8.46. Specification elements for SRF set members are defined in Table 8.47. Each SRF set member shall have a code. The members of an SRF set member may be labelled. If any member of an SRF set has been assigned a label, all members of the set shall be assigned unique labels. An SRF set may contain a large number of members. In particular, the SRF set GTRS_GLOBAL_COORDINATE_SYSTEM, has more than 49 000 members. In such cases, assigning a label to each set member may provide no additional information beyond that which can be obtained from the corresponding code. For such cases, labels may be omitted. In cases where legacy SRF sets have commonly known and widely used member identifiers, such identifiers may be retained as the label for each set member. In particular, the members of the SRF set UNIVERSAL_TRANSVERSE_MERCATOR are labelled.

SRF set member specifications may be either explicit, with a complete specification given for each individual set member, or implicit, with specifications given in terms of general rules that can be instantiated for each individual member. The SRF sets GTRS_GLOBAL_COORDINATE_SYSTEM and UNIVERSAL_TRANSVERSE_MERCATOR illustrate the implicit specification concept.

This International Standard specifies a collection of SRF sets. These specifications appear in Table 8.49 through Table 8.62. Table 8.48 is a directory of standardised SRF sets. The specified collection is not intended to be exhaustive. It includes national and regional grid systems as exemplars of the SRF set concept. Additional SRF sets may be registered in accordance with Clause 13.

Table 8.46 — SRF set specification elements

Element

Definition

SRF set label

The label of the SRF set (see 13.2.2).

SRF set code

The code of the SRF set (see 13.2.3).

Short name

A short name as published or as commonly known, and an optional description.

SRF template

The label of the applicable SRF template.

ORM constraints

Criteria for allowable ORMs. Specifying a single ORM indicates that only that ORM shall be used.

Coverage description

Optional description of the region corresponding to the union of the valid regions of all of the set members.

SRF set
membership

A specification of the parameterization of the set members by listing or parameter algorithm, and valid-region descriptions or valid-region specifications. If valid-region specifications are included, extended valid-region specifications may also be included. References to other specification tables may be used for this purpose (see Table 8.47). Valid-region specifications and extended valid-region specifications are specified by value or by reference. Terms appearing in the references that are cited for a value shall be enclosed in brackets ( { } ).

Notes

An optional description of the structure, modelled region, intended use, and/or application domain of the SRF set.

References

Optional references (see 13.2.5).

 

The specification elements for an SRF set member is defined in Table 8.47.

Table 8.47 — SRF set member specification elements

Element

Definition

SSM label

The optional label of the SRF set member (see 13.2.2), or "n/a" (see 8.7.1).

SSM code

The code of the SRF set member (see 13.2.3); the set member parameter.

Short name

A short name as published or as commonly known and an optional description.

Valid-region

A valid-region description or specification. Optionally an extended valid-region specification. Valid-region specifications and extended valid-region specifications are specified by value or by reference. Terms appearing in the references that are cited for a value shall be enclosed in brackets ( { } ).

Parameter values

The SRF template parameter values specified by value or by reference. If by reference, this specification element shall contain a citation(s) for the SRF template parameters values. Terms appearing in the references that are cited for a value shall be enclosed in brackets ( { } ). Any parameter value that is not specified in the citation(s) shall be specified by value case.

Notes

Optional, additional, non-normative information concerning the SRF set member.

 

Table 8.48 — Directory of SRF sets

Short name

SRF set label

Alabama (US) state plane coordinate system.

ALABAMA_SPCS

GTRS global coordinate system (GCS) (Earth).

GTRS_GLOBAL_COORDINATE_SYSTEM

Japan plane coordinate system

JAPAN_RECTANGULAR_PLANE_CS

Lambert NTF

LAMBERT_NTF

Universal polar stereographic (Earth)

UNIVERSAL_POLAR_STEREOGRAPHIC

Universal transverse Mercator (Earth)

UNIVERSAL_TRANSVERSE_MERCATOR

Wisconsin (US) state plane coordinate system

WISCONSIN_SPCS

 

8.7.2        Alabama (US) state plane coordinate system

Table 8.49 — Alabama (US) state plane coordinate system SRF set

Element

Specification

Element

Specification

SRF set label

ALABAMA_SPCS

SRF set code

1

Short name

Alabama (US) state plane coordinate system.

SRF template

TRANSVERSE_MERCATOR

ORM constraints

ORM N_AM_1983

Coverage description

Valid-region description:
       State of Alabama (US).

SRF set membership

Specified in Table 8.50.

Notes

1)       A set of two localized adjacent SRFs where only one SRF is used for each county in the state and no overlap is allowed.

2)       The conventional coordinate unit is US survey feet. To convert a coordinate in metres to a grid coordinate in US survey feet, use 1m = (39,37 / 12) US survey feet.

References

[SNYD, Table 8 and Appendix C, "Alabama" (East and West)], [ALSP]

 

Table 8.50 — SRF set membership Alabama (US) state plane coordinate system

Element

Specification

Element

Specification

SSM label

WEST_ZONE

SSM code

1

Short name

West zone.

Valid-region

Valid-region description:

Counties: Autauga, Baldwin, Bibb, Blount, Butler, Chilton, Choctaw, Clarke, Colbert, Conecuh, Cullman, Dallas, Escambia, Fayette, Franklin, Greene, Hale, Jefferson, Lamar, Lauderdale, Lawrence, Limestone, Lowndes, Marengo, Marion, Mobile, Monroe, Morgan, Perry, Pickens, Shelby, Sumter, Tuscaloosa, Walker, Washington, Wilcox and Winston.

Parameter values

longitude of origin: λorigin = -87º 30’
latitude of origin:
φorigin = 30º
central scale:
k0 = 1 - 1/15 000
false easting:
uF = 600 000 m
false northing:
vF =0 m

Notes

none.

SSM label

EAST_ZONE

SSM code

2

Short name

East zone.

Valid-region

Valid-region description:

Counties: Barbour, Bullock, Calhoun, Chambers, Cherokee, Clay, Cleburne, Coffee, Coosa, Covington, Crenshaw, Dale, DeKalb, Elmore, Etowah, Geneva, Henry, Houston, Jackson, Lee, Macon, Madison, Marshall, Montgomery, Pike, Randolph, Russell, Saint Clair, Talladega and Tallapoosa.

Parameter values

longitude of origin: λorigin = -85º 50’
latitude of origin:
φorigin = 30º 30’
central scale:
k0 = 1 - 1/25 000
false easting:
uF = 200 000 m
false northing:
vF = 0 m

Notes

none.

 

8.7.3        GTRS global coordinate system (GCS)

Table 8.51 — GTRS global coordinate system (GCS) SRF set

Element

Specification

Element

Specification

SRF set label

GTRS_GLOBAL_COORDINATE_SYSTEM

SRF set code

2

Short name

GTRS global coordinate system (GCS) (Earth).

SRF template

LOCAL_TANGENT_SPACE_EUCLIDEAN

ORM constraints

A global model ERM such as ORM WGS_1984.

Coverage description

Valid-region description:
       Earth (complete).

SRF set membership

Specified in Table 8.52.

Notes

A set of 49 896 localized SRFs, each approximately 100 kilometres square, that are identified according to the geotile reference system indexing scheme. The members of this SRF set are known as cells. For much of the RD surface, each cell valid-region covers one arc degree of geodetic latitude by one arc degree of geodetic longitude. However, near the poles, many arc degrees of longitude are grouped together into a single GCS cell since an arc degree of geodetic longitude becomes arbitrarily small near the poles. GCS cells are always one arc degree of geodetic latitude in extent. Within each GCS cell, a false origin offset is provided. The point of tangency is at the centre of the rectangular GCS cell, even if more than one arc degree of geodetic longitude falls within the GCS SRF cell. The SRFT LOCAL_TANGENT_SPACE_EUCLIDEAN azimuth parameter (α) is zero.

References

[I18025, Table 6.11, GTRS_GEOTILE], [BIRK]

 

Table 8.52 — SRF set membership GTRS global coordinate system (GCS)

Element

Specification

Element

Specification

SSM label

n/a

SSM code

1…49823: As specified in Table 8.53.

Short name

Tile <code>.

Valid-region

Valid-region specification:
  As specified in Table 8.53 as range from the natural origin
Extended valid-region specification:
  Unrestricted.

Parameter values

Surface geodetic coordinate of the tangent point: As specified in Table 8.53.
Azimuth: α = 0 rad.
Offset height: h0 = 0 m.
false easting:
uF = -50 000 m.
false northing:
vF = -50 000 m.

Notes

none

 

Table 8.53 — GTRS natural origin and valid-region by code index

Latitude band
(Tile size)

Tile code

Surface geodetic coordinate of the tangent point
(λorigin, forigin)

Valid-region specification

88º-90ºS
(1º x 30º)

1 + 12•m + n
(
m=0,1; n=0,..,11)

(-165º + n•30º, -89,5º + m•1º)

-15º λ - λorigin ≤+15º
-0,5º
φ - φorigin ≤+0,5º

86º-88ºS
(1º x 15º)

25 + 24•m + n
(
m=0,1; n=0,..,23)

(-172,5º + n•15º, -87,5º + m•1º)

-7,5º λ - λorigin ≤+7,5º
-0,5º
φ - φorigin ≤+0,5º

84º-86ºS
(1º x 10º)

73 + 36•m + n
(
m=0,1; n=0,..,35)

(-175º + n•10º, -85,5º + m•1º)

-5º λ - λorigin ≤+
-0,5º
φ - φorigin ≤+0,5º

80º-84ºS
(1º x 6º)

145 + 60•m + n
(
m=0,..,3; n=0,..,59)

(-177º + n•6º, -83,5º + m•1º)

-3º λ - λorigin ≤+
-0,5º
φ - φorigin ≤+0,5º

78º-80ºS
(1º x 5º)

385 + 72•m + n
(
m=0,1; n=0,..,71)

(-177,5º + n•5º, -79,5º + m•1º)

-2,5º λ - λorigin ≤+2,5º
-0,5º
φ - φorigin ≤+0,5º

71º-78ºS
(1º x 3º)

529 + 120•m + n
(
m=0,..,6; n=0,..,119)

(-178.5º + n•3º, -77,5º + m•1º)

-1,5º λ - λorigin ≤+1,5º
-0,5º
φ - φorigin ≤+0,5º

60º-71ºS
(1º x 2º)

1369 + 180•m + n
(
m=0,..,10; n=0,..,179)

(-179º + n•2º, -70,5º + m•1º)

-1º λ - λorigin ≤+
-0,5º
φ - φorigin ≤+0,5º

60ºS - 60ºN
(1º x 1º)

3349 + 360•m + n
(
m=0,..,119; n=0,..,359)

(-179,5º + n•1º, -59,5º + m•1º)

-0,5º λ - λorigin ≤+0,5º
-0,5º
φ - φorigin ≤+0,5º

71º-60ºN
(1º x 2º)

46549 + 180•m + n
(
m=0,..,10; n=0,..,179)

(-179º + n•2º, 60,5º + m•1º)

-1º λ - λorigin ≤+
-0,5º
φ - φorigin ≤+0,5º

78º-71ºN
(1º x 3º)

48529 + 120•m + n
(
m=0,..,6; n=0,..,119)

(-178.5º + n•3º, 71,5º + m•1º)

-1,5º λ - λorigin ≤+1,5º
-0,5º
φ - φorigin ≤+0,5º

80º-78ºN
(1º x 5º)

49369 + 72•m + n
(
m=0,1; n=0,..,71)

(-177,5º + n•5º, 78,5º + m•1º)

-2,5º λ - λorigin ≤+2,5º
-0,5º
φ - φorigin ≤+0,5º

84º-80ºN
(1º x 6º)

49513 + 60•m + n
(
m=0,..,3; n=0,..,59)

(-177º + n•6º, 80,5º + m•1º)

-3º λ - λorigin ≤+
-0,5º
φ - φorigin ≤+0,5º

86º-84ºN
(1º x 10º)

49752 + 36•m + n
(
m=0,1; n=0,..,35)

(-175º + n•10º, 84,5º + m•1º)

-5º λ - λorigin ≤+
-0,5º
φ - φorigin ≤+0,5º

88º-86ºN
(1º x 15º)

49825 + 24•m + n
(
m=0,1; n=0,..,23)

(-172,5º + n•15º, 86,5º + m•1º)

-7,5º λ - λorigin ≤+7,5º
-0,5º
φ - φorigin ≤+0,5º

90º-88ºN
(1º x 30º)

49873 + 12•m + n
(
m=0,1; n=0,..,11)

(-165º + n•30º, 88,5º + m•1º)

-15º λ - λorigin ≤+15º
-0,5º
φ - φorigin ≤+0,5º

 

8.7.4        Japan plane coordinate system

Table 8.54 — Japan plane coordinate system SRF set

Element

Specification

Element

Specification

SRF set label

JAPAN_RECTANGULAR_PLANE_CS

SRF set code

3

Short name

Japan plane coordinate system

SRF template

TRANSVERSE_MERCATOR

ORM constraints

ORM JGD_2000

Coverage description

Valid-region description:
       Japan excluding northern territories.

SRF set membership

Specified in Table 8.55.

Notes

1)       The coordinate-component ordering convention is: northing first, easting second.

2)       A set of nineteen localized SRFs, each limited to 130 km eastward and westward from the central meridian. Valid-regions are described by political regions (cities, prefectures, counties, and/or partitions thereof).

References

[JMLIT]

 

Table 8.55 — SRF set membership Japan plane coordinate system

Element

Specification

Element

Specification

SSM label

ZONE_I

SSM code

1

Short name

Zone I

Valid-region

Valid region description:
        Prefectures: Nagasaki, Kagosima(islands, atolls, and reefs in 27º ≤ λ ≤ 32º,
128º18’ ≤ φ ≤ 130º (130º13’ for Amami Islands ))

Parameter values

longitude of origin: λorigin = +129º 30’
latitude of origin:
φorigin = +33º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m
False northing:
vF = 0 m

Notes

none

SSM label

ZONE_II

SSM code

2

Short name

Zone II

Valid-region

Valid region description:
        Prefectures: Hukuoka, Saga, Kumamoto, Oita, Miyazaki, Kagosima( excluding the range in Zone_I)

Parameter values

longitude of origin: λorigin = +131º
latitude of origin:
φorigin = +33º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m
False northing:
vF = 0 m

Notes

none

SSM label

ZONE_III

SSM code

3

Short name

Zone III

Valid-region

Valid region description:
        Prefectures: Yamaguti, Simane, Hirosima

Parameter values

longitude of origin: λorigin = +132º 10’
latitude of origin:
φorigin = +36º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m
False northing:
vF = 0 m

Notes

none

SSM label

ZONE_IV

SSM code

4

Short name

Zone IV

Valid-region

Valid region description:
        Prefectures: Kagawa, Ehime, Tokusima, Koti

Parameter values

longitude of origin: λorigin = +133º 30’
latitude of origin: φorigin = +33º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m.
False northing:
vF = 0 m.

Notes

none

SSM label

ZONE_V

SSM code

5

Short name

Zone V

Valid-region

Valid region description:
        Prefectures: Hyogo, Tottori, Okayama

Parameter values

longitude of origin: λorigin = +134º 20’
latitude of origin: φorigin = +36º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m
False northing:
vF = 0 m

Notes

none

SSM label

ZONE_VI

SSM code

6

Short name

Zone VI

Valid-region

Valid region description:
        Prefectures: Kyoto, Osaka , Hukui, Siga, Mie, Nara, Wakayama

Parameter values

longitude of origin: λorigin = +136º 00’
latitude of origin: φorigin = +36º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m
False northing:
vF = 0 m

Notes

none

SSM label

ZONE_VII

SSM code

7

Short name

Zone VII

Valid-region

Valid region description:
        Prefectures: Isikawa, Toyama, Gihu, Aiti

Parameter values

longitude of origin: λorigin = +137º 10’
latitude of origin: φorigin = +36º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m
False northing:
vF = 0 m

Notes

none

SSM label

ZONE_VIII

SSM code

8

Short name

Zone VIII

Valid-region

Valid region description:
        Prefectures: Niigata, Nagano, Yamanasi, Sizuoka

Parameter values

longitude of origin: λorigin = +138º 30’
latitude of origin: φorigin = +36º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m
False northing:
vF = 0 m

Notes

none

SSM label

ZONE_IX

SSM code

9

Short name

Zone IX

Valid-region

Valid region description:
        Prefectures: Tokyo(excluding the range in Zone_XIV, Zone_XVIII, and Zone_XIX), Hukusima, Totigi, Ibaraki, Saitama, Tiba, Gunma, Kanagawa

Parameter values

longitude of origin: λorigin = +139º 50’
latitude of origin: φorigin = +36º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m
False northing:
vF = 0 m

Notes

none

SSM label

ZONE_X

SSM code

10

Short name

Zone X

Valid-region

Valid region description:
        Prefectures: Aomori, Akita, Yamagata, Iwate, Miyagi

Parameter values

longitude of origin: λorigin = +140º 50’
latitude of origin: φorigin = +40º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m
False northing:
vF = 0 m

Notes

none

SSM label

ZONE_XI

SSM code

11

Short name

Zone XI

Valid-region

Valid region description:
        Cities: Otaru, Hakodate, Date
        Branch offices: Iburi(only Usu County and Abuta County), Hiyama, Siribesi, Osima

Parameter values

longitude of origin: λorigin = +140º 15’
latitude of origin: φorigin = +44º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m
False northing:
vF = 0 m

Notes

none

SSM label

ZONE_XII

SSM code

12

Short name

Zone XII

Valid-region

Valid region description:
        Cities: Sapporo, Asahikawa, Wakkanai, Rumoi, Bibai Yuubari, Iwamizawa, Tomakomai, Muroran, Sibetu, Nayoro, Asibetu, Akabira, Mikasa, Takikawa, Sunagawa, Ebetu, Titose, Utasinai, Hukagawa, Monbetu, Hurano, Noboribetu, Eniwa, Kitahirosima, Isikari
        Branch offices: Isikari, Abasiri(only Monbetu County), Kamikawa, Soya, Hidaka, Iburi(excluding Usu County and Abuta County), Sorati, Rumoi

Parameter values

longitude of origin: λorigin = +142º 15’
latitude of origin: φorigin = +44º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m
False northing:
vF = 0 m

Notes

none

SSM label

ZONE_XIII

SSM code

13

Short name

Zone XIII

Valid-region

Valid region description:
        Cities: Kitami, Obihiro, Kusiro, Abasiri, Nemuro
        Branch offices: Nemuro, Kusiro, Abasiri(excluding Monbetu County), Tokati

Parameter values

longitude of origin: λorigin = +144º 15’
latitude of origin: φorigin = +44º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m
False northing:
vF = 0 m

Notes

none

SSM label

ZONE_XIV

SSM code

14

Short name

Zone XIV

Valid-region

Valid region description:
      Tokyo (λ < 28º, 140º 30’ <
φ < 143º 00)

Parameter values

longitude of origin: λorigin = +142º 00’
latitude of origin: φorigin = +26º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m
False northing:
vF = 0 m

Notes

none

SSM label

ZONE_XV

SSM code

15

Short name

Zone XV

Valid-region

Valid region description:
      Okinawa Prefecture (126º <
φ < 130º)

Parameter values

longitude of origin: λorigin = +127º 30’
latitude of origin: φorigin = +26º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m
False northing:
vF = 0 m

Notes

none

SSM label

ZONE_XVI

SSM code

16

Short name

Zone XVI

Valid-region

Valid region description:
      Okinawa Prefecture (
φ < 126º )

Parameter values

longitude of origin: λorigin = +124º 00’
latitude of origin: φorigin = +26º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m
False northing:
vF = 0 m

Notes

none

SSM label

ZONE_XVII

SSM code

17

Short name

Zone XVII

Valid-region

Valid region description:
      Okinawa Prefecture (130º <φ)

Parameter values

longitude of origin: λorigin = +131º 00’
latitude of origin: φorigin = +26º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m
False northing:
vF = 0 m

Notes

none

SSM label

ZONE_XVIII

SSM code

18

Short name

Zone XVIII

Valid-region

Valid region description:
      Tokyo (λ < 28º ,
φ < 140º30’ )

Parameter values

longitude of origin: λorigin = +136º 00’
latitude of origin: φorigin = +20º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m
False northing:
vF = 0 m

Notes

none

SSM label

ZONE_XIX

SSM code

19

Short name

Zone XIX

Valid-region

Valid region description:
            Tokyo (λ < 28º , 143º <
φ )

Parameter values

longitude of origin: λorigin = +154º 00’
latitude of origin: φorigin = +26º
central scale:
k0 = 0,999 9
False easting:
uF = 0 m
False northing:
vF = 0 m

Notes

none

 

8.7.5        Lambert NTF

Table 8.56 — Lambert NTF SRF set

Element

Specification

Element

Specification

SRF set label

LAMBERT_NTF

SRF set code

4

Short name

Lambert NTF.
The Lambert projection-based mapping system for France associated with the NTF.

SRF template

LAMBERT_CONFORMAL_CONIC

ORM constraints

ORM NTF_1896_PM_PARIS

Coverage description

Valid-region description:
    France.

SRF set membership

Specified in Table 8.57.

Notes

A set of four localized adjacent SRFs where only one SRF is used for each portion of France and no overlap is allowed. The prime meridian for each is Paris, France.

References

[LIIE, "Valeurs pour le calcul des coordonnes en projection Lambert de l'ellipsoïde de Clarke 1880 IGN.", "Zone lambert" (I, II, III, and IV)]

 

Table 8.57 — SRF set membership Lambert NTF

Element

Specification

Element

Specification

SSM label

ZONE_I

SSM code

1

Short name

Zone I

Valid-region

Valid region specification:
        -5º ≤ λ ≤ 10º
        -53,5º ≤ φ < 57º

Parameter values

First parallel: φ1 = 48º 35’ 54,682”
Second parallel:
φ2 = 50º 23’ 45,282”
Longitude of origin: λorigin =

Latitude of origin:
φorigin = 49,5º
False easting:
uF = 600 000 m
False northing:
vF =200 000 m

Notes

The prime meridian is Paris, France.

SSM label

ZONE_II

SSM code

2

Short name

Zone II

Valid-region

Valid region specification:
        -5º ≤ λ ≤ 10º
        -50,5º ≤ φ < 53,5º

Parameter values

First parallel: φ1 = 45º 53’ 56,108”
Second parallel:
φ2 = 47º 41’ 45,652”
Longitude of origin: λorigin =
Latitude of origin:
φorigin = 46,8º
False easting: uF = 600 000 m
False northing:
vF =200 000 m

Notes

The prime meridian is Paris, France.

SSM label

ZONE_III

SSM code

3

Short name

Zone III

Valid-region

Valid region specification:
        -5º ≤ λ ≤ 10º
        -47º ≤ φ < 50,5º

Parameter values

First parallel: φ1 = 43º 11’ 57,449”
Second parallel:
φ2 = 44º 59’ 45,938”
Longitude of origin: λorigin =
Latitude of origin:
φorigin = 44,1º
False easting: uF = 600 000 m
False northing:
vF =200 000 m

Notes

The prime meridian is Paris, France.

SSM label

ZONE_IV

SSM code

4

Short name

Zone IV

Valid-region

Valid region specification:
        The island of Corsica.

Parameter values

First parallel: φ1 = 41º 33’ 37,396”
Second parallel:
φ2 = 42º 46’ 3,588”
Longitude of origin: λorigin =
Latitude of origin:
φorigin = 42º 9’
False easting:
uF = 234 358 m
False northing:
vF = 185 861,369 m

Notes

The prime meridian is Paris, France.

 

8.7.6        Universal polar stereographic

Table 8.58 — Universal polar stereographic (UPS) SRF set

Element

Specification

Element

Specification

SRF set label

UNIVERSAL_POLAR_STEREOGRAPHIC

SRF set code

5

Short name

Universal polar stereographic (UPS) (Earth).

SRF template

POLAR_STEREOGRAPHIC

ORM constraints

A global model ERM such as ORM WGS_1984.

Coverage description

Valid-region specification:
   
φ < -80º or 84º ≤ φ
Extended valid-region specification:
   
φ < -79,5º or 83,5º ≤ φ

SRF set membership

Specified in Table 8.59.

Notes

A set of two localized SRFs addressing the north and south polar regions of the Earth. Shares a common boundary with SRFS UNIVERSAL_TRANSVERSE_MERCATOR.

References

[83582, "3-2.4 Specifications of the UPS."]

 

Table 8.59 — SRF set membership Universal polar stereographic (UPS)

Element

Specification

Element

Specification

SSM label

NORTHERN_POLE.

SSM code

1

Short name

UPS, northern pole.

Valid-region

Valid-region specification:          φ ≥ 84º
Extended valid-region specification:  
φ ≥ 83,5º

Parameter values

longitude of origin: λorigin = +
latitude of true scale:
φ1 = +90º
scale at
φ1: k1 = 0,994
false easting:
uF = 2 000 000 m.
false northing:
vF = 2 000 000 m.

Notes

none

SSM label

SOUTHERN_POLE

SSM code

2

Short name

UPS, southern pole.

Valid-region

Valid-region specification:          φ ≤ -80º
Extended valid-region specification:  
φ ≤ -79,5º

Parameter values

longitude of origin: λorigin = +18
latitude of true scale:
φ1 = -90º
scale at
φ1: k1 = 0,994
false easting:
uF = 2 000 000 m.
false northing:
vF = 2 000 000 m.

Notes

none

 

8.7.7        Universal transverse Mercator

Table 8.60 — Universal transverse Mercator (UTM) SRF set

Element

Specification

Element

Specification

SSM label

UNIVERSAL_TRANSVERSE_MERCATOR

SRF set code

6

Short name

Universal transverse Mercator (UTM) (Earth).

SRF template

TRANSVERSE_MERCATOR

ORM constraints

A global model ERM such as ORM WGS_1984.

Coverage description

Valid-region specification:
    -80º ≤
φ ≤ 84º
Extended valid-region specification:
    -80,5º <
φ ≤ 84,5º

SRF set membership

Specified in Table 8.61.

Notes

A set of 120 localized SRFs, where limited overlap is modelled by extended validity regions in the member SRFs. Shares a common boundary with SRFS UNIVERSAL_POLAR_STEREOGRAPHIC.

References

[83582, "2-3 Specifications of the UTM."]

 

Table 8.61 — SRF set membership Universal transverse Mercator (UTM)

Element

Specification

Element

Specification

SSM label

“ZONE_” + <code> + “_NORTHERN_HEMISPHERE”, where the “+” symbol shall denote concatenation of character strings

SSM code

1…60

Short name

UTM Zone <code>, Northern hemisphere.

Valid-region

Valid-region specification:
    (-186º + (<code>)•6º) ≤ λ < (-180º + (<code>)•6º)
    0º ≤
φ < 84º
Extended valid-region specification:
    (-186,5º + (<code>)•6º) ≤ λ < (-179,5º + (<code>)•6º)
    -0,5º ≤
φ < 84,5º

Parameter values

longitude of origin: λorigin = (-183º + (<code>)•6º)
latitude of origin:
φorigin = 0º
central scale:
k0 = 0,999 6
false easting:
uF = 500 000 m.
false northing:
vF = 0 m.

Notes

none

SSM label

“ZONE_” + (<code> - 60) + “_SOUTHERN_HEMISPHERE”, where the “+” symbol shall denote concatenation of character strings

SSM code

61…120

Short Name

UTM Zone <code>, Southern hemisphere.

Valid-region

Valid-region specification:
    (-186º + (<code> - 60)•6º) ≤ λ < (-180º + (<code> - 60)•6º)
    -80º ≤
φ < 0º
Extended valid-region specification:
    (-186,5º + (<code> - 60)•6º) ≤ λ < (-179,5º + (<code> - 60)•6º)
    -80,5º ≤
φ < 0,5º

Parameter values

longitude of origin: λorigin = (-183º + (<code> - 60)•6º)
latitude of origin:
φorigin = 0º.
central scale:
k0 = 0,999 6
false easting:
uF = 500 000 m.
false northing:
vF = 10 000 000 m.

Notes

none

 

8.7.8        Wisconsin (US) state plane coordinate system

Table 8.62 — Wisconsin (US) state plane coordinate system SRF set

Element

Specification

Element

Specification

SRF set label

WISCONSIN_SPCS

SRF set code

7

Short name

Wisconsin (US) state plane coordinate system.

SRF template

LAMBERT_CONFORMAL_CONIC

ORM constraints

ORM N_AM_1983

Coverage description

Valid-region description:
    State of Wisconsin (US).

SRF set membership

Specified in Table 8.63.

Notes

1)       A set of three localized adjacent SRFs where only one SRF is used for each county in the state and no overlap is allowed.

2)       The conventional coordinate unit is US survey feet. To convert a coordinate in metres to a grid coordinate in US survey feet, use 1m = (39,37 / 12) US survey feet.

References

[WSCO, "SPC 83" (South, Central, and North)]

 

Table 8.63 — SRF set membership Wisconsin (US) state plane coordinate

Element

Specification

Element

Specification

SSM label

SOUTH_ZONE

SSM code

1

Short name

South zone

Valid-region

Valid region description:

Counties: Adams, Calumet, Columbia, Crawford, Dane, Dodge, Fond Du Lac, Grant, Green Lake, Green, Iowa, Jefferson, Juneau, Kenosha, La Crosse, Lafayette, Manitowoc, Marquette, Milwaukee, Monroe, Ozaukee, Racine, Richland, Rock, Sauk, Sheboygan, Vernon, Walworth, Washington, Waukesha, Waushara, Winnebago

Parameter values

First parallel: φ1 = 42º 44’
Second parallel:
φ2 = 44º 04’
Longitude of origin: λorigin = -
90º
Latitude of origin:
φorigin = 42º
False easting:
uF = 600 000 m
False northing:
vF = 0 m

Notes

none.

SSM label

CENTRAL_ZONE

SSM code

2

Short name

Central zone

Valid-region

Valid region description:

Counties: Barron, Brown, Buffalo, Chippewa, Clark, Door, Dunn, Eau Claire, Jackson, Kewaunee, Langlade, Lincoln, Marathon, Marinette, Menominee, Oconto, Outagamie, Pepin, Pierce, Polk, Portage, Rusk, Shawano, St. Croix,Taylor, Trempealeau, Waupaca, Wood

Parameter values

First parallel: φ1 = 44º 15’
Second parallel:
φ2 = 45º 30’
Longitude of origin: λorigin = -
90º
Latitude of origin:
φorigin = 43º 50’

False easting: uF = 600 000 m
False northing:
vF = 0 m

Notes

none.

SSM label

NORTH_ZONE

SSM code

3

Short name

North zone

Valid-region

Valid region description:

Counties: Ashland, Bayfield, Burnett, Douglas, Florence, Forest, Iron, Oneida, Price, Sawyer, Vilas, Washburn

Parameter values

First parallel: φ1 = 45º 34’
Second parallel:
φ2 = 46º 46’
Longitude of origin: λorigin = -
90º
Latitude of origin:
φorigin = 45º 10’

False easting: uF = 600 000 m
False northing:
vF = 0 m

Notes

none.



[ Table of contents ]



21 In ISO 19111 terminology, the tangent plane is an engineering datum.