Table 7.5 — EUs with labels beginning with A-L
Label Symbol Quantity Concept definition EQ label Code Reference Supplemental references
AMP_PER_METRE A/m linear electric current density (lineic electric current) The product of the surface density of electric charge IEC 80000-6:2008, item 6-4 and velocity ISO 80000-3:2006, item 3-8.1. LINEIC_ELECTRIC-
_CURRENT
1 IEC 80000-6:2008, item 6-9.a  
magnetic field strength B/μ0 - M, where B is magnetic flux density IEC 80000-6:2008, item 6-21, μ0 is the magnetic constant IEC 80000-6:2008, item 6-26.1, and M is magnetization IEC 80000-6:2008, item 6-24. IEC 80000-6:2008, item 6-25.a  
magnetization dm/dV, where m is the magnetic moment IEC 80000-6:2008, item 6-23 of a substance in a domain with volume V ISO 80000-3:2006, item 3-4. IEC 80000-6:2008, item 6-24.a  
AMP_PER_SQ_M_KELVIN_SQD A/(m2 · K2) thermionic emission current density The thermonic emission current density, J, IEC 80000-6:2008, item 6-8 for a metal is J = AT2 exp(-Φ/kT), where A is the Richardson constant, T is thermodynamic temperature ISO 80000-5:2007, item 5-1, k is the Boltzmann constant ISO 80000-9:2009, item 9-43, and Φ is a work function ISO 80000-12:2009, item 12-25.2. THERMION_EMISSION-
_CUR_DENS
2 ISO 80000-12:2009, item 12-27.a  
AMP_PER_SQ_METRE A/m2 electric current density (areic electric current) ρv, where ρ is electric charge density IEC 80000-6:2008, item 6-3 and v is velocity ISO 80000-3:2006, item 3-8.1. AREIC_ELECTRIC-
_CURRENT
3 IEC 80000-6:2008, item 6-8.a  
AMPERE A current linkage The net electric current IEC 80000-6:2008, item 6-1 through a surface delimited by a closed loop. ELECTRIC_CURRENT 4 IEC 80000-6:2008, item 6-37.a and item 6-37.4  
electric current That constant electric current which, if maintained in two parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2 x 10-7 newton per metre of length.
SI base unit.
IEC 80000-6:2008, item 6-1.a ISO 80000-1:2009, Table 1, "electric current"
magnetic tension The integral from ra to rb of H ·dr, where H is magnetic field strength IEC 80000-6:2008, item 6-25 and r is position vector ISO 80000-3:2006, item 3-1.11 along a given curve C from point a to point b. For an irrotational magnetic field strength, this quantity is equal to the magnetic potential difference. IEC 80000-6:2008, item 6-37.a and item 6-37.2  
magnetomotive force The line integral over a closed curve C of H ·dr where H is magnetic field strength IEC 80000-6:2008, item 6-25 and r is position vector ISO 80000-3:2006, item 3-1.11 along C. IEC 80000-6:2008, item 6-37.a and item 6-37.3  
BECQUEREL Bq activity (of a radionuclide) -dN/dt, where dN is the variation of spontaneous number of nuclei N in a particular energy state, in a sample of a radionuclide, due to spontaneous nuclear transitions from this state during an infinitesimal time interval of duration dt ISO 80000-3:2006, item 3-7. RADIONUCLIDE-
_ACTIVITY
10 ISO 80000-10:2009, item 10-29.a ISO 80000-1:2009, Table 3, "activity (of a radionuclide)"
BECQUEREL_PER_CUBIC_METRE Bq/m3 activity density (volumic activity, activity concentration) The ratio A/V, where A is the activity ISO 80000-10:2009, item 10-29 of a sample of a radionuclide and V is its volume ISO 80000-3:2006, item 3-4. VOLUMIC_ACTIVITY 11 ISO 80000-10:2009, item 10-31.a  
BECQUEREL_PER_KG Bq/kg specific activity (massic activity) The ratio A/m, where A is the activity ISO 80000-10:2009, item 10-29 of a sample of a radionuclide and m is its mass ISO 80000-4:2006, item 4-1. MASSIC_ACTIVITY 12 ISO 80000-10:2009, item 10-30.a  
BEL B field quantity ratio (level difference) The difference between two levels of field quantities with the same reference F0. The level of a field quantity is LF = ln (F/F0), where F and F0 represent two field quantities of the same kind, F0 being a reference quantity.
1 Np is the level of a field quantity when ln (F/F0) = 1, i.e. F/F0 = e.
1 B = (1/2) ln 10 Np = 1,151 293 Np (approximately).
FIELD_OR_POWER-
_LEVEL_DIFF
13 ISO 80000-3:2006, item 3-21.b  
level difference of two power quantities The difference between two levels of power quantities with the same reference P0. The level of a power quantity is LP = (1/2) ln (P/P0), where P and P0 represent two power quantities of the same kind, P0 being a reference quantity. ISO 80000-3:2006, item 3-22.b  
sound power level LW = 10 lg (P/P0) where P is sound power ISO 80000-8:2007, item 8-16 and the reference value in airborne acoustics is P0 =1 pW. ISO 80000-8:2007, item 8-23.a  
sound pressure level Lp = 10 lg (p2/p20) where p is sound pressure ISO 80000-8:2007, item 8-9.2 and the reference value in airborne acoustics is p0 = 20 μPa. ISO 80000-8:2007, item 8-22.a  
CANDELA cd luminous intensity The luminous intensity, in a given direction, of a source that emits monochromatic radiation of a frequency 540 x 1012 Hertz, and that has a radiant intensity in that direction of 1 / 683 watt per steradian.
SI base unit.
LUMINANCE_INTENSITY 14 ISO 80000-7:2008, item 7-35.a ISO 80000-1:2009, Table 1, "luminous intensity"
CD_PER_SQ_METRE cd/m2 luminance At a point on a surface and in a given direction, dIV/dA, where dIV is the luminous intensity ISO 80000-7:2008, item 7-35 of an element of the surface with the area dA ISO 80000-3:2006, item 3-3 of the orthogonal projection of this element on a plane perpendicular to the given direction. LUMINANCE 15 ISO 80000-7:2008, item 7-37.a  
COULOMB C electric charge (quantity of electricity) Q, where dQ = Idt, I is electric current IEC 80000-6:2008, item 6-1, and t is time ISO 80000-3:2006, item 3-7.
1 C = 1 s · A.
ELECTRIC_CHARGE 16 IEC 80000-6:2008, item 6-2.a ISO 80000-1:2009, Table 2, "electric charge"
electric flux The integral over a surface S of D ·en dA, where D is electric flux density IEC 80000-6:2008, item 6-12 and en dA is the vector surface element ISO 80000-3:2006, item 3-3. IEC 80000-6:2008, item 6-17.a  
elementary charge The electric charge IEC 80000-6:2008, item 6-2 of a proton. ISO 80000-9:2009, item 9-49.a ISO 80000-10:2009, item 10-5.a and item 10-5.1
COULOMB_METRE C · m electric dipole moment q(r+ - r-) where r+ and r- are the position vectors ISO 80000-3:2006, item 3-1.11 to carriers of electric charges q and -q IEC 80000-6:2008, item 6-2, respectively.
1 C · m = 1 m · s · A.
ELECTRIC_DIPOLE-
_MOMENT
17 IEC 80000-6:2008, item 6-6.a  
electric dipole moment of a molecule p, where Ep = -p · E, Ep is the interaction energy ISO 80000-5:2007, item 5-20.1 of the molecule with electric dipole moment p and an electric field with electric field strength E IEC 80000-6:2008, item 6-10. ISO 80000-9:2009, item 9-37.a  
COULOMB_METRE_SQD_PER_VOLT C · m2/V electric polarizability of a molecule δpiEj, where pi is the cartesian component along the i axis of the electric dipole moment ISO 80000-9:2009, item 9-37 induced by the applied electric field strength IEC 80000-6:2008, item 6-10 acting on the molecule, and Ej is the component along the j axis of this electric field strength.
1 C · m2/V = 1 (s4 · A2)/kg.
ELECTRIC-
_POLARIZABILITY
18 ISO 80000-9:2009, item 9-39.a  
COULOMB_PER_CUBIC_M C/m3 electric charge density (volumic electric charge) dQ/dV, where Q is electric charge IEC 80000-6:2008, item 6-2 and V is volume ISO 80000-3:2006, item 3-4. VOLUME_DENSITY-
_CHARGE
19 IEC 80000-6:2008, item 6-3.a  
COULOMB_PER_KG C/kg exposure For X- or gamma radiation, dQ/dm, where dQ is the absolute value of the mean total electric charge of the ions of the same sign produced in dry air when all the electrons and positrons liberated or created by photons in an element of air are completely stopped in air, and dm is the mass ISO 80000-4:2006, item 4-1 of that element.
1 C/kg = 1 (s · A)/kg.
EXPOSURE 20 ISO 80000-10:2009, item 10-92.a  
COULOMB_PER_KG_SEC C/(kg · s) exposure rate dX/dt, where dX is the increment of exposure ISO 80000-10:2009, item 10-92 during time interval with duration dt ISO 80000-3:2006, item 3-7.
1 C/(kg · s) = 1 A/kg.
EXPOSURE_RATE 21 ISO 80000-10:2009, item 10-93.a  
COULOMB_PER_MOLE C/mol molar charge e/cB, where e is the elementary charge ISO 80000-9:2009, item 9-49 where cB is the amount-of-substance concentration ISO 80000-9:2009, item 9-13.
1 C/mol = 1 (s · A)/mol.
MOLAR_CHARGE 22 ISO 80000-9:2009, item 9-51.a  
COULOMB_PER_SQ_M C/m2 electric flux density (electric displacement) ε0E + P, where ε0 is the electric constant IEC 80000-6:2008, item 6-14.1, E is electric field strength IEC 80000-6:2008, item 6-10, and P is electric polarization IEC 80000-6:2008, item 6-7. SURFACE_DENSITY-
_CHARGE
23 IEC 80000-6:2008, item 6-12.a  
electric polarization dp/dV, where p is electric dipole moment IEC 80000-6:2008, item 6-6 of a substance within a domain with volume V ISO 80000-3:2006, item 3-4. IEC 80000-6:2008, item 6-7.a  
surface density of electric charge (areic electric charge) dQ/dA, where Q is electric charge IEC 80000-6:2008, item 6-2 and A is area ISO 80000-3:2006, item 3-3. IEC 80000-6:2008, item 6-4.a  
CUBIC_M_PER_CUBIC_M m3/m3 volume fraction of substance B (xBV*m, B)/(ΣxiV*m, i), where the V*m, i is the molar volume ISO 80000-9:2009, item 9-6 of the pure substances i at the same temperature and pressure, xi denotes the amount-of-substance fraction ISO 80000-9:2009, item 9-14 of substance i and Σ denotes summation over all substances i.
1 m3/m3 = 1.
VOLUME_FRACTION 24 ISO 80000-9:2009, item 9-15.a ISO 80000-1:2009, 6.5.5
CUBIC_METRE m3 section modulus Ia/rQ max, where Ia is the second axial moment of area ISO 80000-4:2006, item 4-20.1 and rQ max is the maximum radial distance of any point in the surface considered from the Q-axis with respect to which Ia is defined. VOLUME 25 ISO 80000-4:2006, item 4-21.a  
volume The triple integral over x, y, and z where x, y, and z are cartesian coordinates ISO 80000-3:2006, item 3-1.10. ISO 80000-3:2006, item 3-4.a  
CUBIC_METRE_PER_COULOMB m3/C reciprocal volumic charge (reciprocal charge density) 1/ρ, where ρ is electric charge density IEC 80000-6:2008, item 6-3. RECIPROCAL_VOLUMIC-
_CHARGE
26 IEC 80000-6:2008, item 6-10.a  
CUBIC_METRE_PER_KG m3/kg specific volume (massic volume) 1/ρ, where ρ is mass density ISO 80000-4:2006, item 4-2. SPECIFIC_VOLUME 27 ISO 80000-4:2006, item 4-4.a  
CUBIC_METRE_PER_MOLE m3/mol molar volume V/n for a pure sample where V is volume ISO 80000-3:2006, item 3-4 and n is amount of substance ISO 80000-9:2009, item 9-1. MOLAR_VOLUME 28 ISO 80000-9:2009, item 9-6.a  
CUBIC_METRE_PER_SEC m3/s recombination coefficient (recombination factor) The coefficient a in the law of recombination -(dn+/dt) = -(dn-/dt) = an+n-, where n+ and n- are the ion number densities ISO 80000-10:2009, item 10-64.2 of positive and negative ions, respectively, recombined during an infinitesimal time interval with duration dt ISO 80000-3:2006, item 3-7. VOLUME_FLOW_RATE 29 ISO 80000-10:2009, item 10-65.a  
sound volume velocity (sound volume flow rate) The surface integral of the normal component of the sound particle velocity ISO 80000-8:2007, item 8-11 over the cross-section (through which the sound propagates). ISO 80000-8:2007, item 8-13.a  
volume flow rate dV/dt, where V is volume ISO 80000-3:2006, item 3-4 and t is time ISO 80000-3:2006, item 3-7. ISO 80000-4:2006, item 4-30.a  
DALTON Da mass (1 / 12) of the mass of an atom of the nuclide 12C at rest and in its ground state; 1 Da = 1,660 538 782 x 10-27 kg (approximately). MASS 220 ISO 80000-1:2009, Table 6, "mass" ISO 80000-10:2009, item 10-2.b; ISO 80000-10:2009, item 10-4.b; ISO 80000-10:2009, item 10-23.b
DAY d time (duration) 1 d = 24 h = 86 400 s (exactly). TIME 31 ISO 80000-3:2006, item 3-7.d ISO 80000-1:2009, Table 5, "time"
DB dB field quantity ratio (level difference) The difference between two levels of field quantities with the same reference F0. The level of a field quantity is LF = ln (F/F0), where F and F0 represent two field quantities of the same kind, F0 being a reference quantity.
1 Np is the level of a field quantity when ln (F/F0) = 1, i.e. F/F0 = e.
1 dB = 10-1 B (exactly) = 1,151 293 x 10-1Np (approximately).
FIELD_OR_POWER-
_LEVEL_DIFF
32 ISO 80000-3:2006, item 3-21.b (Conversion factors and remarks)  
level difference of two power quantities The difference between two levels of power quantities with the same reference P0. The level of a power quantity is LP = (1/2) ln (P/P0), where P and P0 represent two power quantities of the same kind, P0 being a reference quantity.
1 dB = 10-1 B (exactly) = 1,151 293 x 10-1Np (approximately).
ISO 80000-3:2006, item 3-22.b (Conversion factors and remarks) ISO 1000:1992, Annex A, 7-21
DB_PER_METRE dB/m power ratio (level difference) gradient The rate of power ratio change as a function of distance. POWER_LEVEL_DIFF-
_LEN_GRADIENT
33 ISO 80000-1:2009, 6.5.3 (derived)  
DB_PER_METRE_KHZ dB/(m · kHz) power ratio (level difference) distance and frequency gradient The rate of power ratio change as a function of distance and spectral frequency. POWER_LEVEL_DIFF-
_LEN_FREQ
34 ISO 80000-1:2009, 6.5.3 (derived)  
DB_PER_OCTAVE none power ratio (level difference) frequency gradient The rate of power ratio change as a function of spectral frequency octave. POWER_LEVEL_DIFF-
_FREQ_GRADIENT
35 ISO 80000-1:2009, 6.5.3 (derived)  
DB_PER_SQ_METRE dB/m2 areic power ratio (level difference) The power level divided by area. AREIC_POWER_LEVEL-
_DIFF
36 ISO 80000-1:2009, 6.5.3 (derived)  
DB_PER_SQ_METRE_KHZ dB/(m2 · kHz) gradient of power ratio (level difference) distance and frequency gradient The rate of change of power ratio change as a function of distance and spectral frequency. GRAD_POWER_LEVEL-
_DIFF_LEN_FREQ
37 ISO 80000-1:2009, 6.5.3 (derived)  
DB_REF_ONE_MICROPASCAL dB (re 1 μPa) pressure power quantity ratio (level) 1 dB (re 1 μPa) is the level of a pressure power quantity when lg (P/P0) = 0,1 where P and P0 represent two pressure powers, P0 being a reference power of 1 μPa. PRESSURE_POWER_LEVEL 38 ISO 80000-1:2009, 6.5.3 (derived)  
DECAY_RATE %/min decay constant (disintegration constant) The relative variation dN/N of the number N of atoms or nuclei in a system, due to spontaneous emission from these atoms or nuclei during an infinitesimal time interval, divided by its duration dt ISO 80000-3:2006, item 3-7. This is equal to (-1/N)*(dN/dt).
1 %/min = 1 / 6 x 10-3 1/s (exactly).
RATE 39 ISO 80000-10:2009, item 10-26.a ISO 80000-1:2009, 6.5.4
DEGREE_ARC ° angle (plane angle) s/r, where s is the length of the included arc of a circle between two radii of the circle ISO 80000-3:2006, item 3-1.8 and r is the radius of the circle ISO 80000-3:2006, item 3-1.5.
1° = (π / 180) rad (exactly).
PLANE_ANGLE 40 ISO 80000-3:2006, item 3-5.b ISO 80000-1:2009, Table 5, "plane angle"
Bragg angle The angle θ, where 2d sin θ = n λ, d is the lattice plane spacing ISO 80000-12:2009, item 12-3, λ is the wavelength ISO 80000-7:2008, item 7-3 of the radiation, and n is an integer. ISO 80000-12:2009, item 12-4.b  
DEGREE_C °C Celsius temperature A special name for the kelvin for use in stating values of Celsius temperature.
t = T - T0 where T0 = 273,15 K (exactly).
THERMO_TEMPERATURE 41 ISO 80000-5:2007, item 5-2.a ISO 80000-1:2009, Table 2, "Celsius temperature"
DEGREE_C_PER_HOUR °C/h thermodynamic temperature change rate The thermodynamic temperature change over an interval of time, divided by that time.
1 °C/h = 1 / 3,6 x 10-3 K/s (exactly).
THERMO_TEMP_CHANGE-
_RATE
42 ISO 80000-1:2009, 6.5.3 and 6.5.6 (derived)  
DEGREE_C_PER_METRE °C/m lineic thermodynamic temperature gradient The thermodynamic temperature change over a distance, divided by that distance.
1 °C/m = 1 K/m (exactly).
LINEIC_THERMO_TEMP-
_GRADIENT
43 ISO 80000-1:2009, 6.5.3 (derived)  
DEGREE_C_PER_SEC °C/s thermodynamic temperature change rate The thermodynamic temperature change over an interval of time, divided by that time.
1 °C/s = 1 K/s (exactly).
THERMO_TEMP_CHANGE-
_RATE
44 ISO 80000-1:2009, 6.5.3 (derived)  
ELECTRONVOLT eV alpha disintegration energy The sum of the kinetic energy ISO 80000-3:2006, item 4-27.3 of the α particle produced in the disintegration process and the recoil energy ISO 80000-5:2007, item 5-20.1 of the product atom in the reference frame in which the emitting nucleus is at rest before its disintegration. ENERGY 45 ISO 80000-10:2009, item 10-34.b  
average energy loss per elementary charge produced Ek/Ni,where Ek is the initial kinetic energy ISO 80000-4:2006, item 4-27.3 of an ionizing charged particle and Ni is the total ionization ISO 80000-10:2009, item 10-61 produced by that particle. ISO 80000-10:2009, item 10-62.b  
beta disintegration energy The sum of the maximum beta particle energy ISO 80000-10:2009, item 10-35 and the recoil energy ISO 80000-5:2007, item 5-20.1 of the atom produced in the reference frame in which the emitting nucleus is at rest before its disintegration. ISO 80000-10:2009, item 10-36.b  
electron affinity The energy ISO 80000-4:2006, item 4.27.4 difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor. ISO 80000-12:2009, item 12-26.b  
energy The kinetic energy acquired by an electron in passing through a potential difference of 1 volt in a vacuum. Its value is experimentally determined as 1,602 176 487 40 x 10-19 J (approximately). ISO 80000-10:2009, item 10-28.b (Conversion factors and remarks) ISO 80000-1:2009, Table 6, "energy"
exchange integral The constituent of the interaction energy ISO 80000-4:2006, item 4-27.4 between the spins of adjacent electrons in matter arising from the overlap of electron state functions. ISO 80000-12:2009, item 12-35.b  
Fermi energy In a metal, the highest occupied energy level ISO 80000-12:2009, item 12-25.1 at zero thermodynamic temperature ISO 80000-5:2007, item 5-1. ISO 80000-12:2009, item 12-28.b and item 12-28.1  
gap energy The difference in energy ISO 80000-4:2006, item 4.27.4 between the lowest level of conduction band and the highest level of valence band. ISO 80000-12:2009, item 12-28.b and item 12-28.2  
maximum beta particle energy The maximum energy ISO 80000-5:2007, item 5-20.1 of the energy spectrum in a beta disintegration process. ISO 80000-10:2009, item 10-35.b  
reaction energy In a nuclear reaction, the sum of the kinetic energies ISO 80000-4:2006, item 4-27.3 and photon energies ISO 80000-5:2007, item 5-20.1 of the reaction products minus the sum of the kinetic and photon energies of the reactants. ISO 80000-10:2009, item 10-38.b and 10-38.1  
resonance energy Kinetic energy ISO 80000-4:2006, item 4-27.3 of an incident particle, in the reference frame of the target, corresponding to a resonance in a nuclear reaction. ISO 80000-10:2009, item 10-38.b and item 10-38.2  
work function The energy ISO 80000-4:2006, item 4.27.4 difference between an electron at rest at infinity and an electron at a certain energy level ISO 80000-12:2009, item 12-25.1. ISO 80000-12:2009, item 12-25.b and item 12-25.2  
ELECTRONVOLT_M_SQD eV · m2 total atomic stopping power S/n, where S is the total linear stopping power ISO 80000-10:2009, item 10-55 and n is the number density ISO 80000-9:2009, item 9-10.1 of the atoms in the substance.
1 eV · m2 = (1,602 176 487 ± 0,000 000 040) x 10-19 J · m2 (approximately).
TOTAL_ATOMIC-
_STOPPING_POWER
46 ISO 80000-10:2009, item 10-56.b  
ELECTRONVOLT_M_SQD_PER_KG (eV · m2)/kg total mass stopping power S/ρ, where S is the total linear stopping power ISO 80000-10:2009, item 10-55 and ρ is the mass density ISO 80000-4:2006, item 4-2 of the sample.
1 (eV · m2)/kg = (1,602 176 487 ± 0,000 000 040) x 10-19 (J · m2)/kg (approximately).
TOTAL_MASS-
_STOPPING_POWER
47 ISO 80000-10:2009, item 10-57.b  
ELECTRONVOLT_PER_METRE eV/m linear energy transfer For ionizing charged particles, dEΔ/dl, where dEΔ is the mean energy lost in electronic collisions locally to matter along a small path through the matter, minus the sum of the kinetic energies of all the electrons released with energies in excess of Δ, and dl ISO 80000-3:2006, item 3-1.1 is the length of that path. TOTAL_LINEAR-
_STOPPING_POWER
48 ISO 80000-10:2009, item 10-88.b  
total linear stopping power -dE/dχ, where -dE is the energy ISO 80000-5:2007, item 5-20.1 decrement in the χ-direction along an elementary path with the length dχ ISO 80000-3:2006, item 3-1.1.
1 eV/m = (1,602 176 487 ± 0,000 000 040) x 10-19 J/m (approximately).
ISO 80000-10:2009, item 10-55.b  
FARAD F capacitance Q/U, where Q is electric charge IEC 80000-6:2008, item 6-2 and U is voltage IEC 80000-6:2008, item 6-11.3.
1 F = 1 C/V = 1 (s4 · A2)/(m2 · kg).
CAPACITANCE 49 IEC 80000-6:2008, item 6-13.a ISO 80000-1:2009, Table 2, "capacitance"
FARAD_PER_METRE F/m permittivity D/E, where D is electric flux density IEC 80000-6:2008, item 6-12 and E is electric field strength IEC 80000-6:2008, item 6-10.
1 F/m = 1 (s4 · A2)/(m3 · kg).
PERMITTIVITY 50 IEC 80000-6:2008, item 6-14.a and item 6-14.2  
GON gon angle (plane angle) s/r, where s is the length of the included arc of a circle between two radii of the circle ISO 80000-3:2006, item 3-1.8 and r is the radius of the circle ISO 80000-3:2006, item 3-1.5.
1 gon = π / 200 rad = 0,015 707 96 rad (exactly).
PLANE_ANGLE 54 ISO 80000-3:2006, item 3-5.e ISO 1000:1992, Annex A, 1-1
GRAM g mass For historical reasons the name of the base unit for mass, the kg, contains the name of the SI prefix "kilo".
A gram is a special name given to unit kg x 10-3 that is used instead of "millikilogram".
MASS 55 ISO 80000-1:2009, 6.5.4, Note 1  
GRAM_PER_CUBIC_CM g/cm3 mass concentration of substance B mB/V, where mB is the mass ISO 80000-4:2006, item 4-1 of substance B and V is the volume ISO 80000-3:2006, item 3-4 of the mixture. VOLUMIC_MASS 56 ISO 80000-9:2009, item 9-11.a and item 9-11.2  
mass density (density) The mass ISO 80000-4:2006, item 4-1 divided by the volume ISO 80000-3:2006, item 3-4.
1 g/cm3 = 103 kg/m3 (exactly).
ISO 80000-4:2006, item 4-2.b (Conversion factors and remarks) ISO 80000-1:2009, 6.5.4; ISO 80000-8:2007, item 8-8.a
GRAM_PER_CUBIC_M g/m3 mass concentration of substance B mB/V, where mB is the mass ISO 80000-4:2006, item 4-1 of substance B and V is the volume ISO 80000-3:2006, item 3-4 of the mixture. VOLUMIC_MASS 57 ISO 80000-9:2009, item 9-11.a and item 9-11.2  
mass density (density) The mass ISO 80000-4:2006, item 4-1 divided by the volume ISO 80000-3:2006, item 3-4.
1 g/m3 = 10-3 kg/m3 (exactly).
ISO 80000-4:2006, item 4-2.b (Conversion factors and remarks) ISO 80000-1:2009, 6.5.4; ISO 80000-8:2007, item 8-8.a
GRAM_PER_GRAM g/g mass fraction of substance B mB/m, where mB is the mass ISO 80000-4:2006, item 4-1 of substance B and m is the total mass of the mixture.
1 g/g = 1 kg/kg = 1.
MASS_FRACTION 58 ISO 80000-9:2009, item 9-12.a ISO 80000-1:2009, 6.5.4; ISO 80000-1:2009, 6.5.5
GRAM_PER_KILOGRAM g/kg mass fraction of substance B mB/m, where mB is the mass ISO 80000-4:2006, item 4-1 of substance B and m is the total mass of the mixture.
1 g/kg = 10-3 kg/kg = 10-3 (exactly).
MASS_FRACTION 59 ISO 80000-9:2009, item 9-12.a ISO 80000-1:2009, 6.5.4; ISO 80000-1:2009, 6.5.5
GRAY Gy absorbed dose (of ionizing radiation) For any ionizing radiation, dε/dm, where dε is the mean energy imparted ISO 80000-10:2009, item 10-83.2 by ionizing radiation to an element of irradiated matter with the mass dm ISO 80000-4:2006, item 4-1.
1 Gy = 1 J/kg = 1 m2/s2.
ABSORBED_DOSE 60 ISO 80000-10:2009, item 10-84.a and item 10-84.1 ISO 80000-1:2009, Table 3, "absorbed dose"
kerma For indirectly ionizing (uncharged) particles, dEtr/dm, where dEtr is the mean sum of the initial kinetic energies ISO 80000-4:2006, item 4-27.3 of all the charged ionizing particles liberated by uncharged ionizing particles in an element of matter, and dm is the mass ISO 80000-4:2006, item 4-1 of that element. ISO 80000-10:2009, item 10-89.a  
GRAY_PER_SECOND Gy/s absorbed dose rate dD/dt, where dD is the increment of absorbed dose ISO 80000-10:2009, item 10-84.1 during time interval with duration dt ISO 80000-3:2006, item 3-7.
1 Gy/s = 1 W/kg = 1 m2/s3.
ABSORBED_DOSE_RATE 61 ISO 80000-10:2009, item 10-87.a  
kerma rate dK/dt, where K is the increment of kerma ISO 80000-10:2009, item 10-89 during time interval with duration t ISO 80000-3:2006, item 3-7. ISO 80000-10:2009, item 10-90.a  
HENRY H inductance (self inductance) Ψ/I, where I is an electric current IEC 80000-6:2008, item 6-1 in a thin conducting loop and Ψ is the linked flux IEC 80000-6:2008, item 6-22.2 caused by that electric current.
1 H = 1 Wb/A = 1 (m2 · kg)/(s2 · A2).
INDUCTANCE 63 IEC 80000-6:2008, item 6-41.a and item 6-41.1 ISO 80000-1:2009, Table 2, "inductance"
mutual inductance Ψm/In, where In is an electric current IEC 80000-6:2008, item 6-1 in a thin conducting loop n and Ψm is the linked flux IEC 80000-6:2008, item 6-22.2 caused by that electric current in another loop m.
1 H = 1 Wb/A = 1 (m2 · kg)/(s2 · A2).
IEC 80000-6:2008, item 6-41.a and item 6-41.2 ISO 80000-1:2009, Table 2, "inductance"
permeance 1/Rm, where Rm is reluctance IEC 80000-6:2008, item 6-39. IEC 80000-6:2008, item 6-40.a  
HENRY_PER_METRE H/m permeability B/H, where B is magnetic flux density IEC 80000-6:2008, item 6-21 and H is magnetic field strength IEC 80000-6:2008, item 6-25.
1 H/m = 1 (m · kg)/(s2 · A2).
MAGNETIC-
_PERMEABILITY
64 IEC 80000-6:2008, item 6-26.a and item 6-26.2  
HERTZ Hz frequency 1/T, where T is period ISO 80000-3:2006, item 3-12.
1 Hz = 1/s.
FREQUENCY 65 ISO 80000-3:2006, item 3-15.a and item 3-15.1 ISO 80000-1:2009, Table 2, "frequency"; ISO 80000-7:2008, item 7-1.a; ISO 80000-8:2007, item 8-2.a
rotational frequency dN/dt, where N is rotation ISO 80000-3:2006, item 3-14 and t is time ISO 80000-3:2006, item 3-7.
1 Hz = 1/s.
ISO 80000-3:2006, item 3-15.a and item 3-15.2  
HOUR h time (duration) 1 h = 60 min = 3 600 s (exactly). TIME 66 ISO 80000-3:2006, item 3-7.c ISO 80000-1:2009, Table 5, "time"
INT_SOLAR_FLUX_UNIT none international solar flux unit The unit of radio emission from the <SUN>, measured at a wavelength of 10.7 cm (approximately 2 800 MHz).
1 SFU = 104 Jy = 10-22 W/(m2 · Hz) (exactly).
FLUX_DENSITY 67 ISO 80000-1:2009, 6.4 and 6.5.3 (derived)  
INV_CUBIC_CM 1/cm3 volumic number of molecules or other elementary entities (number density of molecules or other elementary entities) N/V, where N is the number of particles in the 3D domain with the volume V.
1/cm3 = 10-6 1/m3.
VOLUMETRIC_ENTITY-
_DENSITY
68 ISO 80000-10:2009, item 10-64.a and item 10-64.1 ISO 80000-1:2009, 6.5.4
INV_CUBIC_CM_SEC 1/(cm3 · s) particle source density The rate of production of particles in a 3D domain divided by the volume ISO 80000-3:2006, item 3-4 of that element.
1/(cm3 · s) = 10-6 1/(m3 · s).
VOLUMETRIC_ENTITY-
_EMIT_RATE
69 ISO 80000-10:2009, item 10-68.a ISO 80000-1:2009, 6.5.4
INV_CUBIC_METRE 1/m3 electron density (electron number per volume) The number of electrons per volume in conduction band. VOLUMETRIC_ENTITY-
_DENSITY
70 ISO 80000-12:2009, item 12-30.a and item 12-30.1  
ion number density (ion density) n+ = N+/V, n- = N-/V, where N+ and N- are the number of positive and negative ions, respectively, in a 3D domain with volume V ISO 80000-3:2006, item 3-4. ISO 80000-10:2009, item 10-64.a and item 10-64.2  
neutron number density N/V, where N is the number of neutrons in the 3D domain with the volume V. ISO 80000-10:2009, item 10-64.a and item 10-64.1  
volumic number of molecules or other elementary entities (number density of molecules or other elementary entities) N/V, where N is the number of particles in the 3D domain with the volume V. ISO 80000-9:2009, item 9-10.a and item 9-10.1 ISO 80000-10:2009, item 10-64.a and item 10-64.1
INV_CUBIC_METRE_EV 1/(m3 · eV) energy density of states (dN(E)/dE) (1/V), where N(E) is the total number of states with energy less than E ISO 80000-4:2006, item 4-27.4 and V is volume ISO 80000-3:2006, item 3-4.
1/(m3 · eV) = (6,241 5061 4 ± 0,0001 0011 9) x 1018 1/(m3 · J) (approximately).
DENSITY_STATES 71 ISO 80000-12:2009, item 12-17.b  
INV_CUBIC_METRE_JOULE 1/(m3 · J) energy density of states (dN(E)/dE) (1/V), where N(E) is the total number of states with energy less than E ISO 80000-4:2006, item 4-27.4 and V is volume ISO 80000-3:2006, item 3-4. DENSITY_STATES 72 ISO 80000-12:2009, item 12-17.a  
INV_CUBIC_METRE_SEC 1/(m3 · s) particle source density The rate of production of particles in a 3D domain divided by the volume ISO 80000-3:2006, item 3-4 of that element. VOLUMETRIC_ENTITY-
_EMIT_RATE
73 ISO 80000-10:2009, item 10-68.a  
slowing-down density The number density ISO 80000-10:2009, item 10-64.1 slowing down past a given energy ISO 80000-5:2007, item 5-20.1 value in an infinitesimal time interval, divided by the duration ISO 80000-3:2006, item 3-7 of that interval. ISO 80000-10:2009, item 10-69.a  
INV_HENRY 1/H reluctance Um/Φ, where Um is magnetic tension IEC 80000-6:2008, item 6-37.2 and Φ is magnetic flux IEC 80000-6:2008, item 6-22.1.
1/H = 1 A/Wb = 1 (s2 · A2)/(m2 · kg).
RELUCTANCE 74 IEC 80000-6:2008, item 6-39.a  
INV_KELVIN 1/K cubic expansion coefficient (1/V) (dl/dT), where V is volume ISO 80000-3:2006, item 3-4 and T is thermodynamic temperature ISO 80000-5:2007, item 5-1. LINEAR_EXPANSION-
_COEFF
75 ISO 80000-5:2007, item 5-3.a and item 5-3.2  
linear expansion coefficient (1/l) (dV/dT), where l is length ISO 80000-3:2006, item 3-1.1 and T is thermodynamic temperature ISO 80000-5:2007, item 5-1. ISO 80000-5:2007, item 5-3.a and item 5-3.1  
relative pressure coefficient (1/p) (δpT)V, where p is pressure ISO 80000-4:2006, item 4-15.1, T is thermodynamic temperature ISO 80000-5:2007, item 5-1, and V is volume ISO 80000-3:2006, item 3-4. ISO 80000-5:2007, item 5-3.a and item 5-3.3  
INV_METRE 1/m angular reciprocal lattice vector A vector whose scalar products with all fundamental lattice vectors are integral multiples of 2π. INV_LENGTH 76 ISO 80000-12:2009, item 12-2.a and item 12-2.1  
angular repetency (angular wavenumber) ω/c = 2π/λ, where ω is angular frequency ISO 80000-8:2007, item 8-4, c is phase speed of sound ISO 80000-8:2007, item 14.1, 2π is the phase difference, and λ is wavelength ISO 80000-8:2007, item 8-5. ISO 80000-8:2007, item 8-7.b  
angular repetency (angular wavenumber) 2π σ, where σ is wavenumber ISO 80000-3:2006, item 3-18. ISO 80000-3:2006, item 3-19.b ISO 80000-12:2009, item 12-10.b
curvature 1/ρ, where ρ is radius of curvature ISO 80000-3:2006, item 3-1.13. ISO 80000-3:2006, item 3-2.a  
fundamental reciprocal lattice vectors The fundamental translation vectors for the reciprocal lattice. ISO 80000-12:2009, item 12-2.a and item 12-2.2  
lens power Algebraic quantity characterizing the focusing properties of an optical system, thus 1/f where f is the object focal distance ISO 80000-7:2008, item 7-59.3. ISO 80000-7:2008, item 7-60.a  
linear absorption coefficient (1/Φλ(λ)) (dΦλ(λ)/dl), where dΦ/Φ is the relative decrease, caused by absorption, in the spectral radiant flux ISO 80000-7:2008, item 7-13 Φ of a collimated beam of electromagnetic radiation corresponding to the wavelength lambda; ISO 80000-7:2008, item 7-3.2 during traversal of an infinitesimal layer of a medium and dl is the length ISO 80000-3:2006, item 3-1.1 traversed. ISO 80000-7:2008, item 7-25.a and item 7-25.2  
linear attenuation coefficient (1/J) (dJ/dχ), where J is magnitude of the current rate ISO 80000-10:2009, item 10-49 of a beam of particles parallel to the χ direction. ISO 80000-10:2009, item 10-50.a  
linear attenuation coefficient (linear extinction coefficient) μ(λ) = (1/Φλ(λ)) (dΦλ(λ)/dl), where dΦ/Φ is the relative decrease in the spectral radiant flux ISO 80000-7:2008, item 7-13 Φ of a collimated beam of electromagnetic radiation corresponding to the wavelength lambda; ISO 80000-7:2008, item 7-3.2 during traversal of an infinitesimal layer of a medium and dl is the length ISO 80000-3:2006, item 3-1.1 traversed. ISO 80000-7:2008, item 7-25.a and item 7-25.1  
linear ionization (1/e) (dQ/dl), where e is the elementary charge and dQ is the average total charge of all positive ions produced over an infinitesimal element of the path with length dl ISO 80000-3:2006, item 3-1.1 by an ionizing charged particle. ISO 80000-10:2009, item 10-60.a  
volumic cross-section (macroscopic cross-section) The sum of the cross-sections ISO 80000-10:2009, item 10-39.1 for a reaction or process of a specified type over all atoms or other entities in a given 3D domain, divided by the volume ISO 80000-3:2006, item 3-4 of that domain. ISO 80000-10:2009, item 10-43.a  
wavenumber (repetency) 1/λ, where λ is wavelength ISO 80000-3:2006, item 3-17. ISO 80000-3:2006, item 3-18.a ISO 80000-8:2007, item 8-6.a
INV_MICRON 1/μm angular repetency (angular wavenumber) ω/c = 2π/λ, where ω is angular frequency ISO 80000-8:2007, item 8-4, c is phase speed of sound ISO 80000-8:2007, item 14.1, 2π is the phase difference, and λ is wavelength ISO 80000-8:2007, item 8-5.
1 μm-1 = 106 1/m (exactly).
INV_LENGTH 77 ISO 80000-8:2007, item 8-7.b  
angular repetency (angular wavenumber) 2π σ, where σ is wavenumber ISO 80000-3:2006, item 3-18.
1 μm-1 = 106 1/m (exactly).
ISO 80000-3:2006, item 3-19.b ISO 80000-12:2009, item 12-10.b
wavenumber (repetency) 1/λ, where λ is wavelength ISO 80000-3:2006, item 3-17. ISO 80000-3:2006, item 3-18.a ISO 80000-8:2007, item 8-6.a
INV_MOLE 1/mol Avogadro constant For a pure sample, N/n, where N is the number of particles ISO 80000-9:2009, item 9-3 and n is amount of substance ISO 80000-9:2009, item 9-1. MOLAR_DENSITY 78 ISO 80000-9:2009, item 9-4.a  
INV_PASCAL 1/Pa bulk compressibility (compressibility) -(1/V) dV/dp, where V is volume ISO 80000-3:2006, item 3-4 and p is pressure ISO 80000-4:2006, item 4-15.1.
1/Pa = 1 (m · s2)/kg.
COMPRESSIBILITY 79 ISO 80000-4:2006, item 4-19.a  
isentropic compressibility (1/V) (δV/dδp)S, where V is volume ISO 80000-3:2006, item 3-4, p is pressure ISO 80000-4:2006, item 4-15.1, and S is entropy ISO 80000-5:2007, item 5-18. ISO 80000-5:2007, item 5-5.a and item 5-5.2  
isothermal compressibility (1/V) (δV/dδp)T, where V is volume ISO 80000-3:2006, item 3-4, p is pressure ISO 80000-4:2006, item 4-15.1, and T is thermodynamic temperature ISO 80000-5:2007, item 5-1. ISO 80000-5:2007, item 5-5.a and item 5-5.1  
INV_RADIAN 1/rad reciprocal plane angle The reciprocal of the angle between two half-lines terminating at the same point is the ratio of the radius of a circle (with its centre at that point) to the length of the included arc of that circle.
1 rad-1 = 1 m/m = 1.
RECIPROCAL_PLANE-
_ANGLE
80 ISO 80000-1:2009, 6.5.3 (derived)  
INV_SEC_STERADIAN 1/(s · sr) photon intensity In a given direction from a source, the photon flux dΦp leaving the source, or an element of the source, in an elementary cone containing the given direction, divided by the solid angle dΩ ISO 80000-3:2006, item 3-6 of that cone, thus dΦp/dΩ. PHOTON_INTENSITY 81 ISO 80000-7:2008, item 7-51.a  
INV_SECOND 1/s angular frequency 2π f, where f is frequency ISO 80000-3:2006, item 3-15.1. RATE 82 ISO 80000-3:2006, item 3-16.b ISO 80000-8:2007, item 8-4.b
cyclotron angular frequency (|q|/mB, where q is electric charge IEC 80000-6:2008, item 6-2 of the particle, m is its mass ISO 80000-4:2006, item 4-1, and B is magnetic flux density IEC 80000-6:2008, item 6-21. ISO 80000-10:2009, item 10-17.b  
damping coefficient 1/τ, where τ is the time constant of an exponentially varying quantity ISO 80000-3:2006, item 3-13. ISO 80000-3:2006, item 3-23.a  
Debye angular frequency The cut-off angular frequency ISO 80000-3:2006, item 3-16 in the Debye model of the vibrational spectrum of a solid. ISO 80000-12:2009, item 12-11.b  
decay constant (disintegration constant) The relative variation dN/N of the number N of atoms or nuclei in a system, due to spontaneous emission from these atoms or nuclei during an infinitesimal time interval, divided by its duration dt ISO 80000-3:2006, item 3-7. This is equal to (-1/N)*(dN/dt). ISO 80000-10:2009, item 10-26.a  
Larmor angular frequency (e/2meB, where e is the elementary charge ISO 80000-10:2009, item 10-5.1, me is the rest mass of electron ISO 80000-10:2009, item 10-2 and B is magnetic flux density IEC 80000-6:2008, item 6-21. ISO 80000-10:2009, item 10-16.b and item 10-16.1  
nuclear precession angular frequency γB, where γ is the gyromagnetic coefficient ISO 80000-10:2009, item 10-13.2 and B is magnetic flux density IEC 80000-6:2008, item 6-21. ISO 80000-10:2009, item 10-16.b and item 10-16.2  
photon flux Quotient of the number dNp of photons ISO 80000-7:2008, item 7-49 emitted, transmitted, or received in a time interval, by its duration dt ISO 80000-3:2006, item 3-7, thus dNp/dt. ISO 80000-7:2008, item 7-50.a  
rotational frequency dN/dt, where N is rotation ISO 80000-3:2006, item 3-14 and t is time ISO 80000-3:2006, item 3-7. ISO 80000-3:2006, item 3-15.b and item 3-15.2  
INV_SQ_CM_SEC_SR_EV 1/(cm2 · s · sr · eV) particle flux density within an energy range At a point on a surface and in a given direction, the charged particle flux of an element of the surface within an energy range of 1 electronvolt centred on a given particle energy, divided by the area of the orthogonal projection of this element on a plane perpendicular to the given direction, and divided by an element of solid angle containing the given direction.
1/(cm2 · s · sr · eV) = 10-6 1/(m2 · s · sr · eV) (exactly).
PARTICLE_FLUX-
_DENSITY
83 ISO 80000-1:2009, 6.5.4 (derived)  
INV_SQ_CM_SEC_SR_KEV 1/(cm2 · s · sr · KeV) particle flux density within an energy range At a point on a surface and in a given direction, the charged particle flux of an element of the surface within an energy range of 1 kiloelectronvolt centred on a given particle energy, divided by the area of the orthogonal projection of this element on a plane perpendicular to the given direction, and divided by an element of solid angle containing the given direction.
1/(cm2 · s · sr · KeV) = 10-9 1/(m2 · s · sr · eV) (exactly, assuming an even distribution of particle energies).
PARTICLE_FLUX-
_DENSITY
84 ISO 80000-1:2009, 6.5.4 (derived)  
INV_SQ_CM_SEC_SR_MEV 1/(cm2 · s · sr · MeV) particle flux density within an energy range At a point on a surface and in a given direction, the charged particle flux of an element of the surface within an energy range of 1 megaelectronvolt centred on a given particle energy, divided by the area of the orthogonal projection of this element on a plane perpendicular to the given direction, and divided by an element of solid angle containing the given direction.
1/(cm2 · s · sr · MeV) = 10-12 1/(m2 · s · sr · eV) (exactly, assuming an even distribution of particle energies).
PARTICLE_FLUX-
_DENSITY
85 ISO 80000-1:2009, 6.5.4 (derived)  
INV_SQ_CM_SEC_STERADIAN 1/(cm2 · s · sr) photon luminance (photon radiance) At a point on a surface and in a given direction, the photon intensity dIp ISO 80000-7:2008, item 7-51 of an element of the surface, divided by the area dA ISO 80000-3:2006, item 3-3 of the orthogonal projection of this element on a plane perpendicular to the given direction, thus dIp/dA.
1/(cm2 · s · sr) = 10-4 1/(m2 · s · sr) (exactly).
PHOTON_LUMINANCE 86 ISO 80000-7:2008, item 7-52.a ISO 80000-1:2009, 6.5.4
INV_SQ_M_SEC_SR_EV 1/(m2 · s · sr · eV) particle flux density within an energy range At a point on a surface and in a given direction, the charged particle flux of an element of the surface within an energy range of 1 electronvolt centred on a given particle energy, divided by the area of the orthogonal projection of this element on a plane perpendicular to the given direction, and divided by an element of solid angle containing the given direction. PARTICLE_FLUX-
_DENSITY
87 ISO 80000-1:2009, 6.5.3 (derived)  
INV_SQ_M_SEC_STERADIAN 1/(m2 · s · sr) photon luminance (photon radiance) At a point on a surface and in a given direction, the photon intensity dIp ISO 80000-7:2008, item 7-51 of an element of the surface, divided by the area dA ISO 80000-3:2006, item 3-3 of the orthogonal projection of this element on a plane perpendicular to the given direction, thus dIp/dA. PHOTON_LUMINANCE 88 ISO 80000-7:2008, item 7-52.a  
INV_SQ_METRE 1/m2 particle fluence At a given point in space, the number dN of particles incident on a small spherical domain, divided by the cross-sectional area dA ISO 80000-3:2006, item 3-3 of that domain: dN/dA. AREAL_ENTITY_DENSITY 89 ISO 80000-10:2009, item 10-44.a  
particle fluence At a given point in space, the number dN of particles incident on a small spherical domain, divided by the cross-sectional area dA ISO 80000-3:2006, item 3-3 of that domain: dN/dA. ISO 80000-10:2009, item 10-44.a  
INV_SQ_METRE_SEC 1/(m2 · s) particle current A vector quantity, the integral of whose normal component over any surface is equal to the net number N of particles passing through that surface in an infinitesimal time interval divided by its duration dt ISO 80000-3:2006, item 3-7. PARTICLE_CURRENT-
_DENSITY
90 ISO 80000-10:2009, item 10-49.a  
particle fluence rate dφ/dt, where dφ is the increment of the particle fluence ISO 80000-10:2009, item 10-44 during an infinitesimal time interval with duration dt ISO 80000-3:2006, item 3-7. ISO 80000-10:2009, item 10-45.a  
photon exitance At a point on a surface, the photon flux dΦp ISO 80000-7:2008, item 7-50 leaving an element of the surface, divided by the area dA of that element, thus dΦp/dA. ISO 80000-7:2008, item 7-53.a  
photon irradiance At a point on a surface, the photon flux dΦp ISO 80000-7:2008, item 7-50 incident on an element of the surface, divided by the area dA of that element, thus dΦp/dA. ISO 80000-7:2008, item 7-54.a  
INV_STERADIAN 1/sr reciprocal solid angle The reciprocal of a solid angle of a cone is the ratio of the square of the radius of a sphere (with its centre at the apex of that cone) to the area cut out on a spherical surface.
1 sr-1 = 1 m2/m2 = 1.
RECIPROCAL_SOLID-
_ANGLE
91 ISO 80000-1:2009, 6.5.3 (derived)  
INV_STERADIAN_METRE 1/(sr · m) spectral reciprocal solid angle The reciprocal of a solid angle of a cone is the ratio of the square of the radius of a sphere (with its centre at the apex of that cone) to the area cut out on a spherical surface, as a function of radiant wavelength. SPECTRAL-
_RECIPROCAL_SOLID-
_ANGLE
92 ISO 80000-1:2009, 6.5.3 (derived)  
INV_STERADIAN_MICRON 1/(sr · μm) spectral reciprocal solid angle The reciprocal of a solid angle of a cone is the ratio of the square of the radius of a sphere (with its centre at the apex of that cone) to the area cut out on a spherical surface, as a function of radiant wavelength.
1/(sr · μm) = 106 1/(sr · m) (exactly).
SPECTRAL-
_RECIPROCAL_SOLID-
_ANGLE
93 ISO 80000-1:2009, 6.5.3 (derived)  
JANSKY Jy flux density The amount of a given type of radiation that crosses a specified area within a specified period.
1 Jy = 10-26 W/(m2 · Hz) (exactly).
FLUX_DENSITY 94 ISO 80000-1:2009, 6.4  
JOULE J alpha disintegration energy The sum of the kinetic energy ISO 80000-3:2006, item 4-27.3 of the α particle produced in the disintegration process and the recoil energy ISO 80000-5:2007, item 5-20.1 of the product atom in the reference frame in which the emitting nucleus is at rest before its disintegration. ENERGY 95 ISO 80000-10:2009, item 10-34.a  
average energy loss per elementary charge produced Ek/Ni,where Ek is the initial kinetic energy ISO 80000-4:2006, item 4-27.3 of an ionizing charged particle and Ni is the total ionization ISO 80000-10:2009, item 10-61 produced by that particle. ISO 80000-10:2009, item 10-62.a  
beta disintegration energy The sum of the maximum beta particle energy ISO 80000-10:2009, item 10-35 and the recoil energy ISO 80000-5:2007, item 5-20.1 of the atom produced in the reference frame in which the emitting nucleus is at rest before its disintegration. ISO 80000-10:2009, item 10-36.a  
electron affinity The energy ISO 80000-4:2006, item 4.27.4 difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor. ISO 80000-12:2009, item 12-26.a  
energy imparted For ionizing radiation in the matter in a given 3D domain, Σiεi, where the energy deposit, εi is the energy ISO 80000-5:2007, item 5-20.1 deposited in a single interaction i, and is given by εi = εin - εout + Q, where εin is the energy ISO 80000-5:2007, item 5-20.1 of the incident ionizing particle, excluding rest energy ISO 80000-10:2009, item 10-3, εout is the sum of the energies ISO 80000-5:2007, item 5-20.1 of all ionizing particles leaving the interaction, excluding rest energy ISO 80000-10:2009, item 10-3, and Q is the change in the rest energies ISO 80000-10:2009, item 10-3 of the nucleus and of all particles involved in the interaction. ISO 80000-10:2009, item 10-83.a and item 10-83.1  
enthalpy U + pV, where U is internal energy ISO 80000-5:2007, item 5-20.2, p is pressure ISO 80000-4:2006, item 4-15.1, and V is volume ISO 80000-3:2006, item 3-4. ISO 80000-5:2007, item 5-20.a and item 5-20.3  
exchange integral The constituent of the interaction energy ISO 80000-4:2006, item 4-27.4 between the spins of adjacent electrons in matter arising from the overlap of electron state functions. ISO 80000-12:2009, item 12-35.a  
Fermi energy In a metal, the highest occupied energy level ISO 80000-12:2009, item 12-25.1 at zero thermodynamic temperature ISO 80000-5:2007, item 5-1. ISO 80000-12:2009, item 12-28.a and item 12-28.1  
gap energy The difference in energy ISO 80000-4:2006, item 4.27.4 between the lowest level of conduction band and the highest level of valence band. ISO 80000-12:2009, item 12-28.b and item 12-28.2  
heat (amount of heat) The difference between the increase in the total energy ISO 80000-5:2007, item 5-20.1 of a physical system and the work done on the system, provided that the amounts of substances within the system are not changed. ISO 80000-5:2007, item 5-6.a  
kinetic energy For a particle, mv2/2, where m is mass ISO 80000-4:2006, item 4-1 and v is speed ISO 80000-3:2006, item 3-8.1.
1 J = 1 N·m = 1 (m2 · kg)/s2.
ISO 80000-4:2006, item 4-27.a and item 4-27.3 ISO 80000-1:2009, Table 2, "energy"
level width ℏ/τ, where ℏ is the reduced Planck constant ISO 80000-10:2009, item 10-6.2 and τ is the mean lifetime ISO 80000-10:2009, item 10-27. ISO 80000-10:2009, item 10-28.a  
maximum beta particle energy The maximum energy ISO 80000-5:2007, item 5-20.1 of the energy spectrum in a beta disintegration process. ISO 80000-10:2009, item 10-35.a  
mean energy imparted To the matter in a given domain, Rin - Rout + ΣQ, where Rin is the radiant energy ISO 80000-10:2009, item 10-46 of all those charged and uncharged ionizing particles that enter the domain, Rout is the radiant energy ISO 80000-10:2009, item 10-46 of all those charged and uncharged ionizing particles that leave the domain, and ΣQ is the sum of all changes of the rest energy ISO 80000-10:2009, item 10-3 of nuclei and elementary particles that occur in that domain. ISO 80000-10:2009, item 10-83.a and item 10-83.2  
mechanical energy T + V, where T is kinetic energy ISO 80000-4:2006, item 4-27.3 and V is potential energy ISO 80000-4:2006, item 4-27.2.
1 J = 1 N·m = 1 (m2 · kg)/s2.
ISO 80000-4:2006, item 4-27.a and item 4-27.4 ISO 80000-1:2009, Table 2, "energy"
potential energy The negative of the integral of F over r, where F is a conservative force ISO 80000-4:2006, item 4-9.1 and r is a position vector ISO 80000-3:2006, item 3-1.11.
1 J = 1 N·m = 1 (m2 · kg)/s2.
ISO 80000-4:2006, item 4-27.a and item 4-27.2 ISO 80000-1:2009, Table 2, "energy"
radiant energy The energy ISO 80000-5:2007, item 5-20.1 emitted, transferred or received as radiation. ISO 80000-7:2008, item 7-6.a  
reaction energy In a nuclear reaction, the sum of the kinetic energies ISO 80000-4:2006, item 4-27.3 and photon energies ISO 80000-5:2007, item 5-20.1 of the reaction products minus the sum of the kinetic and photon energies of the reactants. ISO 80000-10:2009, item 10-38.a and 10-38.1  
resonance energy Kinetic energy ISO 80000-4:2006, item 4-27.3 of an incident particle, in the reference frame of the target, corresponding to a resonance in a nuclear reaction. ISO 80000-10:2009, item 10-38.a and item 10-38.2  
work The integral of P over t, where P is power ISO 80000-4:2006, item 4-26 and t is time ISO 80000-3:2006, item 3-7.
1 J = 1 N·m = 1 (m2 · kg)/s2.
ISO 80000-4:2006, item 4-27.a and item 4-27.1 ISO 80000-1:2009, Table 2, "energy"
work function The energy ISO 80000-4:2006, item 4.27.4 difference between an electron at rest at infinity and an electron at a certain energy level ISO 80000-12:2009, item 12-25.1. ISO 80000-12:2009, item 12-25.a and item 12-25.2  
JOULE_METRE_SQD J · m2 total atomic stopping power S/n, where S is the total linear stopping power ISO 80000-10:2009, item 10-55 and n is the number density ISO 80000-9:2009, item 9-10.1 of the atoms in the substance.
1 J · m2 = 1 (m4 · kg)/s2.
TOTAL_ATOMIC-
_STOPPING_POWER
96 ISO 80000-10:2009, item 10-56.a  
JOULE_METRE_SQD_PER_KG (J · m2)/kg total mass stopping power S/ρ, where S is the total linear stopping power ISO 80000-10:2009, item 10-55 and ρ is the mass density ISO 80000-4:2006, item 4-2 of the sample.
1 (J · m2)/kg = 1 m4/s2.
TOTAL_MASS-
_STOPPING_POWER
97 ISO 80000-10:2009, item 10-57.a  
JOULE_PER_CUBIC_M J/m3 electromagnetic energy density (volumic electromagnetic energy) (1/2)(E ·D + B ·H) where E is electric field strength IEC 80000-6:2008, item 6-10, D is electric flux density IEC 80000-6:2008, item 6-12, B is magnetic flux density IEC 80000-6:2008, item 6-21, H is magnetic field strength IEC 80000-6:2008, item 6-25.
1 J/m3 = 1 kg/(m · s2).
ENERGY_DENSITY 98 IEC 80000-6:2008, item 6-33.a  
radiant energy density dQ/dV, where dQ is the radiant energy ISO 80000-7:2008, item 7-6 in an elementary three-dimensional domain, divided by the volume dV ISO 80000-3:2006, item 3-4 of that domain. ISO 80000-7:2008, item 7-7.a  
sound energy density The time-averaged sound energy in a given volume divided by that volume. ISO 80000-8:2007, item 8-15.a  
JOULE_PER_GRAM_K J/(g · K) massic entropy (specific entropy) S/m, where S is entropy ISO 80000-5:2007, item 5-18 and m is mass ISO 80000-4:2006, item 4-1. SPECIFIC_HEAT-
_CAPACITY
99 ISO 80000-5:2007, item 5-19.a  
specific heat capacity The heat capacity ISO 80000-5:2007, item 5-15 divided by mass ISO 80000-4:2006, item 4-1.
1 J/(g · K) = 103 J/(kg · K) (exactly).
ISO 80000-5:2007, item 5-16.a and item 5-16.1 ISO 80000-1:2009, 6.5.4
JOULE_PER_KELVIN J/K Boltzmann constant R/NA, where R is the molar gas constant ISO 80000-9:2009, item 9-42 and NA is the Avogadro constant ISO 80000-9:2009, item 9-4. This is a constant equal to 1,380 650 4 x 10-23 J/K. HEAT_CAPACITY 100 ISO 80000-9:2009, item 9-43.a  
entropy When a small amount of heat ISO 80000-5:2007, item 5-6 dQ is received by a system whose thermodynamic temperature ISO 80000-5:2007, item 5-1 is T, the entropy of the system increases by dQ/T, provided that no irreversible change takes place in the system. ISO 80000-5:2007, item 5-18.a  
heat capacity When the thermodynamic temperature of a system is increased by dT as a result of the addition of a small amount of heat dQ, dQ/dT, where Q is amount of heat ISO 80000-5:2007, item 5-6 and T is thermodynamic temperature ISO 80000-5:2007, item 5-1.
1 J/K = 1 (m2 · kg)/(s2 · K).
ISO 80000-5:2007, item 5-15.a  
JOULE_PER_KELVIN_MOLE J/(K · mol) molar entropy S/n, where S is entropy ISO 80000-5:2007, item 5-18 and n is amount of substance ISO 80000-9:2009, item 9-1. MOLAR_ENTROPY 101 ISO 80000-9:2009, item 9-9.a  
molar gas constant pVm/T, for an ideal gas where p is pressure ISO 80000-4:2006, item 4-15.1, Vm is molar volume ISO 80000-9:2009, item 9-6, and T is thermodynamic temperature ISO 80000-5:2007, item 5-1. ISO 80000-9:2009, item 9-42.a  
molar heat capacity C/n, where C is heat capacity ISO 80000-5:2007, item 5-15 and n is amount of substance ISO 80000-9:2009, item 9-1.
1 J/(K · mol) = 1 (m2 · kg)/(s2 · K · mol).
ISO 80000-9:2009, item 9-8.a  
JOULE_PER_KG J/kg specific energy E/m, where E is energy ISO 80000-5:2007, item 5-20.1 is m is mass ISO 80000-4:2006, item 4-1.
1 J/kg = 1 m2/s2.
SPECIFIC_ENERGY 102 ISO 80000-5:2007, item 5-21.a and item 5-21.1  
JOULE_PER_KG_KELVIN J/(kg · K) massic entropy (specific entropy) S/m, where S is entropy ISO 80000-5:2007, item 5-18 and m is mass ISO 80000-4:2006, item 4-1. SPECIFIC_HEAT-
_CAPACITY
103 ISO 80000-5:2007, item 5-19.a  
specific heat capacity The heat capacity ISO 80000-5:2007, item 5-15 divided by mass ISO 80000-4:2006, item 4-1.
1 J/(kg · K) = 1 m2/(s2 · K).
ISO 80000-5:2007, item 5-16.a and item 5-16.1  
JOULE_PER_KM J/km linear energy transfer For ionizing charged particles, dEΔ/dl, where dEΔ is the mean energy lost in electronic collisions locally to matter along a small path through the matter, minus the sum of the kinetic energies of all the electrons released with energies in excess of Δ, and dl ISO 80000-3:2006, item 3-1.1 is the length of that path.
1 J/km = 10-3 J/m (exactly).
LINEAR_ENERGY-
_TRANSFER
104 ISO 80000-10:2009, item 10-88.a  
total linear stopping power -dE/dχ, where -dE is the energy ISO 80000-5:2007, item 5-20.1 decrement in the χ-direction along an elementary path with the length dχ ISO 80000-3:2006, item 3-1.1.
1 J/km = 1 x 10-3 J/m (exactly).
ISO 80000-10:2009, item 10-55.a ISO 80000-1:2009, 6.5.4
JOULE_PER_M_FOURTH_PWR J/m4 spectral radiant energy density in terms of wavelength wλ(λ) = dw/dλ, where dw is the infinitesimal part of radiant energy density w ISO 80000-7:2008, item 7-7 corresponding to light with wavelength λ ISO 80000-7:2008, item 7-3.2 in the infinitesimal interval [λ, λ + dλ], divided by the range dλ of that interval.
1 J/m4 = 1 kg/(m2 · s2).
SPECTRAL_RAD-
_ENERGY_DENSITY
105 ISO 80000-7:2008, item 7-8.a  
JOULE_PER_METRE J/m linear energy transfer For ionizing charged particles, dEΔ/dl, where dEΔ is the mean energy lost in electronic collisions locally to matter along a small path through the matter, minus the sum of the kinetic energies of all the electrons released with energies in excess of Δ, and dl ISO 80000-3:2006, item 3-1.1 is the length of that path.
1 J/m = 1 (m · kg)/s2.
LINEAR_ENERGY-
_TRANSFER
106 ISO 80000-10:2009, item 10-88.a  
total linear stopping power -dE/dχ, where -dE is the energy ISO 80000-5:2007, item 5-20.1 decrement in the χ-direction along an elementary path with the length dχ ISO 80000-3:2006, item 3-1.1. ISO 80000-10:2009, item 10-55.a  
JOULE_PER_MOLE J/mol chemical potential of substance B GnB)T,p,ni for a mixture of substances i, where G is Gibbs energy ISO 80000-5:2007, item 5-20.5 and nB is the amount of substance B ISO 80000-9:2009, item 9-1. MOLAR_ENERGY 107 ISO 80000-9:2009, item 9-17.a  
molar internal energy U/n, where U is internal energy ISO 80000-5:2007, item 5-20.2 and n is amount of substance ISO 80000-9:2009, item 9-1.
1 J/mol = 1 (m2 · kg)/(s2 · mol).
ISO 80000-9:2009, item 9-7.a  
JOULE_PER_SQ_METRE J/m2 energy fluence At a given point of space, the sum of the radiant energies dR ISO 80000-10:2009, item 10-46, exclusive of rest energy, of all particles incident on a small spherical domain, divided by the cross-sectional area dA ISO 80000-3:2006, item 3-3 of that domain: dR/dA. RADIANT_ENERGY-
_FLUENCE
108 ISO 80000-10:2009, item 10-47.a  
radiant spherical exposure (radiant fluence) The integral from 0 to Δt of E0 over t where E0 is the spherical irradiance ISO 80000-7:2008, item 7-16 acting during time interval with duration Δt ISO 80000-3:2006, item 3-7.
1 J/m2 = 1 kg/s2.
ISO 80000-7:2008, item 7-17.a  
JOULE_SECOND J · s Planck constant The elementary quantum of action ISO 80000-4:2006, item 4-37.
1 J · s = 1 (m2 · kg)/s.
PLANCK_CONSTANT 109 ISO 80000-10:2009, item 10-6.a and item 10-6.1  
KELVIN K Curie temperature The critical thermodynamic temperature ISO 80000-5:2007, item 5-1 of a ferromagnet. THERMO_TEMPERATURE 110 ISO 80000-12:2009, 12-36.a and item 12-36.1  
Debye temperature hωD/k, where k is the Boltzmann constant ISO 80000-9:2009, item 9-43, h is the Planck constant ISO 80000-10:2009, item 10-6.1 divided by 2π, and ωD is the Debye angular frequency ISO 80000-12:2009, item 12-11. ISO 80000-12:2009, 12-12.a  
Fermi temperature EF/k, where EF is Fermi energy ISO 80000-12:2009, item 12.28.1 and k is the Boltzmann constant ISO 80000-9:2009, item 9-43. ISO 80000-12:2009, 12-29.a  
Néel temperature The critical thermodynamic temperature ISO 80000-5:2007, item 5-1 of an antiferromagnet. ISO 80000-12:2009, 12-36.a and item 12-36.2  
superconduction transition temperature The critical thermodynamic temperature ISO 80000-5:2007, item 5-1 of a superconductor. ISO 80000-12:2009, 12-36.a and item 12-36.3  
thermodynamic temperature The fraction 1 / 273,16 of the thermodynamic temperature of the triple point of water.
SI base unit.
ISO 80000-5:2007, item 5-1.a ISO 80000-1:2009, Table 1, "thermodynamic temperature"
KELVIN_PER_KM K/km lineic thermodynamic temperature gradient The thermodynamic temperature difference divided by distance.
1 K/km = 10-3 K/m (exactly).
LINEIC_THERMO_TEMP-
_GRADIENT
111 ISO 80000-1:2009, 6.5.3 and 6.5.4 (derived)  
KELVIN_PER_METRE K/m lineic thermodynamic temperature gradient The thermodynamic temperature difference divided by distance. LINEIC_THERMO_TEMP-
_GRADIENT
112 ISO 80000-1:2009, 6.5.3 (derived)  
KELVIN_PER_SEC K/s thermodynamic temperature change rate The thermodynamic temperature change over an interval of time, divided by that time. THERMO_TEMP_CHANGE-
_RATE
113 ISO 80000-1:2009, 6.5.3 and 6.5.6 (derived)  
KELVIN_PER_WATT K/W thermal resistance The thermodynamic temperature ISO 80000-5:2007, item 5-1 difference divided by heat flow rate ISO 80000-5:2007, item 5-7.
1 K/W = 1 (m2 · kg · K)/s3.
THERMAL_RESISTANCE 114 ISO 80000-5:2007, item 5-12.a  
KG_METRE_PER_SEC kg · m/s momentum For a particle, the product m v, where m is mass ISO 80000-4:2006, item 4-1 and v is velocity ISO 80000-3:2006, item 3-8.1. MOMENTUM 115 ISO 80000-4:2006, item 4-8.a  
KG_METRE_SQD kg · m2 mass moment of inertia (moment of inertia) (about an axis) The integral of rQ2 over m, where rQ is the radial distance ISO 80000-3:2006, item 3-1.6 from a Q-axis and m is mass ISO 80000-4:2006, item 4-1. MOMENT_INERTIA 116 ISO 80000-4:2006, item 4-7.a  
KG_METRE_SQD_PER_SEC (kg · m2)/s moment of momentum (angular momentum) For a particle, the cross product r x p, where r is position vector ISO 80000-3:2006, item 3-1.11 and p is momentum ISO 80000-4:2006, item 4-8. ANGULAR_MOMENTUM 117 ISO 80000-4:2006, item 4-12.a  
KG_PER_CUBIC_METRE kg/m3 mass concentration of substance B mB/V, where mB is the mass ISO 80000-4:2006, item 4-1 of substance B and V is the volume ISO 80000-3:2006, item 3-4 of the mixture. VOLUMIC_MASS 118 ISO 80000-9:2009, item 9-11.a and item 9-11.2  
mass density (density) The mass ISO 80000-4:2006, item 4-1 divided by the volume ISO 80000-3:2006, item 3-4. ISO 80000-4:2006, item 4-2.a ISO 80000-8:2007, item 8-8.a
KG_PER_KG kg/kg mass fraction of substance B mB/m, where mB is the mass ISO 80000-4:2006, item 4-1 of substance B and m is the total mass of the mixture.
1 kg/kg = 1.
MASS_FRACTION 119 ISO 80000-9:2009, item 9-12.a ISO 80000-1:2009, 6.5.5
KG_PER_LITRE kg/l mass concentration of substance B mB/V, where mB is the mass ISO 80000-4:2006, item 4-1 of substance B and V is the volume ISO 80000-3:2006, item 3-4 of the mixture. VOLUMIC_MASS 120 ISO 80000-9:2009, item 9-11.b (Conversion factors and remarks) and item 9-11.2  
mass density (density) The mass ISO 80000-4:2006, item 4-1 divided by the volume ISO 80000-3:2006, item 3-4.
1 kg/l = 10-3 kg/m3 (exactly).
ISO 80000-4:2006, item 4-2.c  
KG_PER_METRE kg/m linear density (lineic mass) dm/dl, where m is mass ISO 80000-4:2006, item 4-1 and l is length ISO 80000-3:2006, item 3-1.1. LINEIC_MASS 121 ISO 80000-4:2006, item 4-6.a  
KG_PER_MOLE kg/mol molar mass m/n for a pure sample where m is mass ISO 80000-4:2006, item 4-1 and n is amount of substance ISO 80000-9:2009, item 9-1. MOLAR_MASS 122 ISO 80000-9:2009, item 9-5.a  
KG_PER_SECOND kg/s mass flow rate dm/dt, where m is mass ISO 80000-4:2006, item 4-1 and t is time ISO 80000-3:2006, item 3-7. MASS_FLOW_RATE 123 ISO 80000-4:2006, item 4-29.a  
KG_PER_SQ_METRE kg/m2 mean mass range R ρ, where R is the mean linear range ISO 80000-10:2009, item 10-58 and ρ is the mass density ISO 80000-4:2006, item 4-2 of the sample. SURFACE_DENSITY 124 ISO 80000-10:2009, item 10-59.a  
surface density (areic mass) dm/dA, where m is mass ISO 80000-4:2006, item 4-1 and A is area ISO 80000-3:2006, item 3-3. ISO 80000-4:2006, item 4-5.a  
KILOGRAM kg mass The mass of the international prototype of the kilogram.
SI base unit.
MASS 125 ISO 80000-4:2006, item 4-1.a ISO 80000-1:2009, Table 1, "mass"; ISO 80000-10:2009, item 10-1.a; ISO 80000-10:2009, item 10-2.a; ISO 80000-10:2009, item 10-23.a; ISO 80000-12:2009, item 12-31.a
KM_PER_HOUR km/h velocity dr/dt, where r is position vector ISO 80000-3:2006, item 3-1.11 and t is time ISO 80000-3:2006, item 3-7.
1 km/h = 1 / 3,6 m/s (exactly).
SPEED 127 ISO 80000-3:2006, item 3-8.b  
LITRE l, L
(Both symbols are equally accepted.)
volume The triple integral over x, y, and z where x, y, and z are cartesian coordinates ISO 80000-3:2006, item 3-1.10.
1 l = 1 dm3 = 10-3 m3 (exactly).
VOLUME 130 ISO 80000-3:2006, item 3-4.b ISO 80000-1:2009, Table 5, "volume"
LITRE_PER_HOUR L/h volume flow rate The volume of matter which crosses a given surface, divided by time.
1 L/h = 1 / 3,6 x 10-6 m3/s (exactly).
VOLUME_FLOW_RATE 131 ISO 80000-1:2009, 6.5.3 (derived)  
LITRE_PER_SECOND L/s volume flow rate The volume of matter which crosses a given surface, divided by time.
1 L/s = 10-3 m3/s (exactly).
VOLUME_FLOW_RATE 132 ISO 80000-1:2009, 6.5.3 (derived)  
LUMEN lm luminous flux The product of Km and of the infinite integral of Φλ(λ) V(λ) over λ, where Km is the maximum spectral luminous efficacy ISO 80000-7:2008, item 7-29, Φλ(λ) is the spectral radiant flux ISO 80000-7:2008, item 7-13, Remarks 7-13, V(λ) is the spectral luminous efficiency ISO 80000-7:2008, item 7-28, and λ is the wavelength ISO 80000-7:2008, item 7-3.2
1 lm = 1 cd · sr.
LUMINANCE_FLUX 134 ISO 80000-7:2008, item 7-32.a ISO 80000-1:2009, Table 2, "luminous flux"
LUMEN_HOUR lm · h luminous energy (quantity of light) The time integral of the luminous flux ISO 80000-7:2008, item 7-32 occurring during a time interval with duration Δt ISO 80000-3:2006, item 3-7.
1 lm · h = 3 600 lm · s (exactly).
QUANTITY_LIGHT 135 ISO 80000-7:2008, item 7-34.b  
LUMEN_PER_SQ_METRE lm/m2 luminous exitance At a point on a surface, the luminous flux dφv ISO 80000-7:2008, item 7-32 leaving an element of the surface, divided by the area dA of that element, thus dφv/dA. LUMINANCE_EXITANCE 136 ISO 80000-7:2008, item 7-40.a  
LUMEN_PER_WATT lm/W luminous efficacy of a source ΦV/P, where ΦV is the luminous flux ISO 80000-7:2008, item 7-32 and P is the corresponding electric active power IEC 80000-6:2008, item 6-56.
1 lm/W = 1 (s3 · lm)/(m2 · kg).
LUMINANCE_EFFICIENCY 137 ISO 80000-7:2008, item 7-33.a and item 7-33.2  
luminous efficacy of radiation ΦV/Φ, where ΦV is the luminous flux ISO 80000-7:2008, item 7-32 and Φ is the corresponding radiant flux ISO 80000-7:2008, item 7-13.
1 lm/W = 1 (s3 · lm)/(m2 · kg).
ISO 80000-7:2008, item 7-33.a and item 7-33.1  
LUMEN_SECOND lm · s luminous energy (quantity of light) The time integral of the luminous flux ISO 80000-7:2008, item 7-32 occurring during a time interval with duration Δt ISO 80000-3:2006, item 3-7. QUANTITY_LIGHT 138 ISO 80000-7:2008, item 7-34.a  
LUX lx illuminance At a point on a surface, dΦ/dA, where dΦ is the luminous flux ISO 80000-7:2008, item 7-35 incident on an element of the surface with area dA ISO 80000-3:2006, item 3-3.
1 lx = 1 lm/m2.
ILLUMINANCE 139 ISO 80000-7:2008, item 7-36.a ISO 80000-1:2009, Table 2, "illuminance"
LUX_HOUR lx · h luminous exposure The time integral of illuminance EV ISO 80000-7:2008, item 7-36 during the duration Δt ISO 80000-3:2006, item 3-7.
1 lx · h = 3 600 lx · s (exactly).
LIGHT_EXPOSURE 140 ISO 80000-7:2008, item 7-41.b  
LUX_SECOND lx · s luminous exposure The time integral of illuminance EV ISO 80000-7:2008, item 7-36 during the duration Δt ISO 80000-3:2006, item 3-7. LIGHT_EXPOSURE 141 ISO 80000-7:2008, item 7-41.a